このキーワード
友達に教える
URLをコピー

ケルビンとは?

ケルビン
kelvin
【記号】
K

国際単位系 (SI)
【種類】
基本単位

熱力学温度
【定義】
ボルツマン定数6977138064900000000♠1.380649×10 J/K とすることによって定まる温度
【由来】
標準大気圧下での水の沸点氷点の温度差の 100 分の 1
【語源】
ケルヴィン卿

ケルビン(英語: kelvin, 記号: K)は、熱力学温度(絶対温度)の単位である。国際単位系 (SI) において基本単位の一つとして位置づけられている。

ケルビンの名は、イギリス物理学者で、絶対温度目盛りの必要性を説いたケルビン卿ウィリアム・トムソンにちなんで付けられた。なお、ケルビン卿の通称は彼が研究生活を送ったグラスゴーにあるケルビン川から取られている。

定義

新定義

SI基本単位の再定義 (2019年)」も参照

現在の「ケルビン」は、以下のように定義されている。(第26回国際度量衡総会の決定。2019年5月20日施行)

The kelvin, symbol K, is the SI unit of thermodynamic temperature. It is defined by taking the fixed numerical value of the Boltzmann constant k to be 6977138064900000000♠1.380649×10 when expressed in the unit J・K, which is equal to s・m・kg K, where the kilogram, metre and second are defined in terms of h, c and ∆νCs. 訳:ケルビン(K)は熱力学温度の単位である。その大きさは、単位s・m・kg K(J・K に等しい)による表現で、ボルツマン定数kの数値を6977138064900000000♠1.380649×10と定めることによって設定される。

日本の法令上は、計量法第3条の規定に基づく計量単位令(平成4年政令第357号)が、計量単位令の一部を改正する政令(令和元年5月17日政令第6号)により改正され、2019年5月20日に施行することにより変更された。計量単位令における定義の表現は次のようになっている。

ボルツマン定数を6977138064900000000♠1.380649×10J/K とすることによって定まる温度(ケルビンで表される温度は熱力学温度とし、セルシウス度又は度で表される温度はセルシウス温度(ケルビンで表した熱力学温度の値から273.15を減じたもの)とする。)

科学的な視点では、この再定義により、温度の単位が他のSI基本単位と関連づけられ、どんな特定の物質からも独立した安定した定義を得ることができる。実際的な視点では、再定義の影響はほとんどない。セルシウス度の歴史的な定義であった標準大気圧の下での水の氷点沸点は、1954年の定義ではそれぞれ 5000000000000000000♠0 °C および 7002100000000000000♠100 °Cと厳密には一致せず、それぞれ6997251900000000000♠0.002519 °C(7002273152518999999♠273.152519 K)、7001999743000000000♠99.9743 °C(7002373124300000000♠373.1243 K) となっていた(水の性質#物理的性質を参照)が、これは2019年の新定義でも水が凍る温度(融点)は依然として273.152 519 K、すなわち 0.002 519°C である(水#融点)。

ケルビンが熱力学温度の単位であることから、絶対零度は0ケルビンと定まる。さらに、1ケルビンを三重点熱力学温度の273.16分の1としている。これは、元々はセルシウス度の数値に 273.15 を足した(絶対零度を 0 とした)温度目盛りとして定義されたものであったが、現在では逆にセルシウス度がケルビンを元に定義されている。

2019年までの定義

2019年までの国際単位系におけるケルビンの定義は以下の通りであった。

熱力学温度の単位、ケルビンは、水の三重点の熱力学温度の1/273.16である。
補足:この定義は、下記の物質量の比により厳密に定義された同位体組成を持つ水に関するものである(後述)。
  • 7000100000000000000♠1 molH あたり 6996155760000000000♠0.00015576 molH
  • 7000100000000000000♠1 molO あたり 6996379900000000000♠0.0003799 molO
  • 7000100000000000000♠1 molO あたり 6997200520000000000♠0.0020052 molO

換算

セルシウス温度 t とそれに等しいケルビン T の関係
t/C=T/K-273.15{\displaystyle t/{}^{\circ }{\text{C}}=T/{\text{K}}-273.15}
T/K=t/C+273.15{\displaystyle T/{\text{K}}=t/{}^{\circ }{\text{C}}+273.15}

なお、量記号を単位記号で割ったものは、その量をその単位で計ったときの数値を表す。

カ氏温度 θ とそれに等しいケルビン T の関係
θ/F=95T/K-459.67{\displaystyle \theta /{}^{\circ }{\text{F}}={\frac {9}{5}}T/{\text{K}}-459.67}
T/K=59(θ/F+459.67){\displaystyle T/{\text{K}}={\frac {5}{9}}(\theta /{}^{\circ }{\text{F}}+459.67)}
熱力学温度のエネルギーによる表現
プラズマ物理学の分野では温度を慣例的にエネルギーの単位である電子ボルト(記号: eV)で示すことがある。
その温度における分子の平均運動エネルギーに相当し、ボルツマン定数 k=6977138059547884790♠8.617×10 eV/K により換算される。
1 eV/k=11,604 K
1 K =6977138059557622000♠8.617×10 eV/k
ケルビンから他の単位への換算公式
ケルビンから ケルビンへ
セルシウス度 [°C] = [K] - 273.15 | [K] = [°C] + 273.15
ファーレンハイト度 [°F] = [K] × 5 - 459.67 | [K] = ([°F] + 459.67) × 9
ランキン度 [°R] = [K] × 5 | [K] = [°R] × 9
温度の間隔は以下のようになっている。
1 K = 1 °C = 5 °F = 5 °R
他の温度の単位への換算

歴史

熱力学温度」および「水#物理的性質」も参照
単位名称の元となったケルビン卿

1848年、ケルビン卿は論文「絶対温度目盛りについて」(On an Absolute Thermometric Scale) で、"infinite cold"(絶対零度)を目盛りのゼロ点とし、温度間隔はセルシウス度と同じとする温度目盛りの必要性を説いた。ケルビン卿は、当時の気温計により絶対零度は-273 °Cに等しいと計算した。この絶対目盛りは今日では「ケルビン熱力学温度目盛り」として知られている。ケルビンが算出した"-273"という数値は、氷点におけるセルシウス度あたりの気体の膨張率 0.00366 の逆数から求めたものであり、現在認められている値ともほぼ一致している。

1954年の第10回国際度量衡総会 (CGPM) の第3決議にて、水の三重点を正確に273.16ケルビンとする現行の定義が採択された。

1967-1968年の第13回国際度量衡総会の決議3にて、それまでの単位名称「ケルビン度」(degree Kelvin)と記号 °K を改め、単位名称を「ケルビン」(kelvin)、記号を K とした。そして、尺度ではなく単位であることを明示するために、決議4にて「熱力学温度の単位、ケルビンは、水の三重点の熱力学温度の273.16である」と定められた。

2005年、国際度量衡委員会 (CIPM) は、定義に使用する水の同位体組成についての補足を追加した。これは、水の物理的性質は、厳密には、その同位体組成の違いによって異なるため、三重点を測定するための水について特定の同位体組成を指定する必要があるからである。ここで指定された水は、ウィーン標準平均海水(Vienna Standard Mean Ocean Water, VSMOW)と呼ばれるものであり、の厳密な物理的性質を計測する場合の国際標準物質となっているものである。

2007年、測温諮問委員会からCIPMに、現行の定義では、20 K以下と7003130000000000000♠1300 K以上で十分な計測ができない報告がなされた。測温諮問委員会では、現行の水の三重点による定義よりも、ボルツマン定数を基準にした方がより良い温度の計量ができ、低温や高温での計測困難を克服できると考えた。CIPMは、ボルツマン定数を正確に6977138065049999999♠1.3806505×10 J/Kに固定することでケルビンを定義することを提案した。CIPMは、この提案が2011年の第24回CGPMで採択されることを望んでいたが、第24回CGPMでは、この提案はSI基本単位全体の見直しの一部として考慮すべきとして、採択は2014年のCGPMに延期された。第25回国際度量衡総会(CGPM)(2014年11月18~20日)においては、「提示されたデータは、新しいSIの定義を採択するには、十分頑強ではない」として、2018年に行われる次の第26回CGPMまで改訂を延期することとされた。また再定義のために必要となる基礎定数の新データは2017年7月1日までに論文として受け入れられたものでなければならないこととされた。

上記の基礎定数の新データ(複数)は、CODATAが評価して、SIの再定義に必要な精度を備えていることが確認されたので、CIPMはCGPMにおける決議案を2018年2月に決定した。

この決議案は2018年11月13-16日に開催された第26回国際度量衡総会の最終日である11月16日に決議承認された。このケルビンの定義変更を含む新しいSIは2019年5月20日に施行された。

使用上の慣例

ケルビンは国際単位系の単位であり、単位記号は大文字の K が正しい(人名に由来する単位には大文字が用いられる。)。かつては「°K」と書かれていたが現在では誤りである。

英語など複数形と単数形を区別する言語では、ボルトオームなど他のSI単位と同様、数値が1以外のときには複数形で表記される(例:「水の三重点は正確に273.16ケルビンである」は "the triple point of water is exactly 273.16 kelvins" となる)。「ケルビン温度目盛り ("Kelvin scale")」という用語における"Kelvin"は形容詞として機能し、この場合は頭文字を大文字で書く。

他の大部分のSI単位の記号(例外は角度の単位(例:45°3′4″))と同様、数値と単位記号の間には、"99.987 K" のように空白を入れる。

1967年の第13回CGPMまで、ケルビンは他の温度の単位と同様、「」(degree)と呼ばれていた。他の温度の単位との区別のために「ケルビン度」("degree Kelvin") や「絶対度」("degree absolute") と呼び、記号を「 °K」としていた。1948年から1954年までは「絶対度」が正式な単位名称であったが、ランキン度のことも絶対度と呼ぶことがあり、曖昧さがあった。第13回CGPMで単位名称が「ケルビン」(記号:K)に改められた。

セルシウス温度との併用

セルシウス温度とケルビンの両方の目盛りが振られた温度計

科学と技術の分野では、同じ文章中でセルシウス温度とケルビンを併用することがしばしばある(例えば「測定値は7002273160280000000♠0.01028 °Cで、不確かさは60 µK」)。ケルビンとセルシウス温度の温度の間隔は同じ(つまりケルビンとセルシウス度とは同じ)であり、SIにおいてはセルシウス度は「セルシウス温度を表すためのケルビンの特別な名称」とされているので、このような表記は許容される。第13回CGPMの決議3は「温度間隔はセルシウス度によって表現しても良い」と公式に表明しており、「°C」と「K」を併用する習慣は科学的な分野の広範囲にわたり見られる。「µ°C」(マイクロ度、microdegrees Celsius)のような、温度間隔を表すセルシウス度にSI接頭辞を伴った形の使用は、広く採用されなかった。

温度以外の使用法

色温度

詳細は「色温度」を参照
シュテファン=ボルツマンの法則」も参照

ケルビンは、光源の色温度の単位としても用いられる。色温度は、黒体がその温度に応じた色の光を放射するという原理に基づく。約7003400000000000000♠4000 K以下の温度の黒体は赤みがかって見え、約7003750000000000000♠7500 K以上の黒体は青っぽく見える。画像投影と写真撮影の分野において、色温度は重要である。昼光用のフィルムの感光乳剤は約7003560000000000000♠5600 Kの色温度が要求される。恒星のスペクトル分類ヘルツシュプルング・ラッセル図上の位置は、「有効温度」として知られる恒星の表面温度に基づいている。例えば、太陽光球は、7003577800000000000♠5778 Kの有効温度を持つ。

デジタルカメラや画像編集ソフトウェアでは、編集や設定メニューで色温度(K)をよく使う。色温度が高くなると、画像は白または青っぽく見えるようになる。Kの値を小さくすると、画像は赤っぽく暖みのある色になる。

雑音温度

詳細は「雑音指数」を参照

電子工学において、回路にどれくらいノイズが乗っているか(ノイズ・フロア)の指標としてケルビンが使われ、これを雑音温度という。熱雑音(ジョンソン–ナイキスト・ノイズ)は、ボルツマン定数に由来するノイズで、フリスの雑音の公式を使用している回路の雑音温度を決定するのに用いることができる。

符号位置

【記号】
Unicode
JIS X 0213
文字参照
名称
K | U+212A | - | 
 | ケルビン

ケルビンの単位記号は、コードポイントU+212A kelvin signUnicodeにコード化されている。しかしこれは、既存の文字コードとの互換性のために用意されている互換文字である。Unicode標準では、この文字の代わりにU+004B K latin capital letter k、つまり普通のアルファベットの大文字のKを使うことを推奨している。「次の3つの文字様記号は、普通の文字と正準等価である: U+2126 ohm sign, U+212A kelvin sign, and U+212B angstrom sign。これら3つの全ての文字については、普通の文字が使われなければならない。」

関連項目

温度の単位の比較
【】
ケルビン
セルシウス度
ファーレンハイト度
ランキン度
ドリール度
ニュートン度
レオミュール度
レーマー度
絶対零度 | 0 | -273.15 | -459.67 | 0 | 559.725 | -90.14 | -218.52 | -135.90
地球表面の最低気温(※1) | 183.95 | -89.2 | -128.56 | 331.11 | 283.8 | -29.436 | -71.36 | -39.33
ファーレンハイト寒剤 | 255.37 | -17.78 | 0 | 459.67 | 176.67 | -5.87 | -14.22 | -1.83
融点(標準状態下) | 273.15 | 0 | 32 | 491.67 | 150 | 0 | 0 | 7.5
地球表面の平均気温 | 288 | 15 | 59 | 518.67 | 127.5 | 4.95 | 12 | 15.375
人間の平均体温 | 309.95 | 36.8 | 98.24 | 557.91 | 94.8 | 12.144 | 29.44 | 26.82
地球表面の最高気温(※2) | 329.85 | 56.7 | 134.06 | 593.73 | 64.95 | 18.711 | 45.36 | 37.268
水の沸点(標準状態下) | 373.15 | 100 | 212 | 671.67 | 0 | 33 | 80 | 60
チタンの融点 | 1941 | 1668 | 3034 | 3494 | -2352 | 550 | 1334 | 883
太陽の表面温度 | 5800 | 5526 | 9980 | 10440 | -8140 | 1823 | 4421 | 2909

参考文献

脚注

注釈

  1. ^ 温度の単位としてケルビンを用いることで、シャルルの法則をより簡便に表すことができる。

出典

  1. ^ A concise summary of the International System of Units, SI Table 1 The seven base units of the SI、第2ページ
  2. ^ 第三条 前条第一項第一号に掲げる物象の状態の量のうち別表第一の上欄に掲げるものの計量単位は、同表の下欄に掲げるとおりとし、その定義は、国際度量衡総会の決議その他の計量単位に関する国際的な決定及び慣行に従い、政令で定める。
  3. ^ Updating the definition of the kelvin”. 国際度量衡局. 2010年2月23日閲覧。
  4. ^ Resolution 4: Definition of the SI unit of thermodynamic temperature (kelvin)”. Resolutions of the 13th CGPM. Bureau International des Poids et Mesures (1967年). 2008年2月6日閲覧。
  5. ^ Lord Kelvin, William (October 1848). “On an Absolute Thermometric Scale”. Philosophical Magazine. http://zapatopi.net/kelvin/papers/on_an_absolute_thermometric_scale.html 2008年2月6日閲覧。.
  6. ^ Resolution 3: Definition of the thermodynamic temperature scale”. Resolutions of the 10th CGPM. Bureau International des Poids et Mesures (1954年). 2008年2月6日閲覧。
  7. ^ 国際文書 国際単位系 (SI) 第 8 版日本語版 (2006) pp. 20, 24。
  8. ^ Resolution 3: SI unit of thermodynamic temperature (kelvin)”. Resolutions of the 13th CGPM. Bureau International des Poids et Mesures (1967年). 2008年2月6日閲覧。
  9. ^ 国際文書 国際単位系 (SI) 第 8 版日本語版 (2006) pp. 59, 61。
  10. ^ 国際文書 国際単位系 (SI) 第 8 版日本語版 (2006) pp. 85–86『CIPM, 2005年 熱力学温度の単位, ケルビンの定義の明確化』 。
  11. ^ Unit of thermodynamic temperature (kelvin)”. SI Brochure, 8th edition. Bureau International des Poids et Mesures. pp. Section 2.1.1.5 (1967年). 2008年2月6日閲覧。
  12. ^ Fischer, J. et al (2007年5月2日). “Report to the CIPM on the implications of changing the definition of the base unit kelvin (PDF)”. 2011年1月2日閲覧。
  13. ^ Ian Mills (2010年9月29日). “Draft Chapter 2 for SI Brochure, following redefinitions of the base units”. CCU. 2011年1月1日閲覧。
  14. ^ “General Conference on Weights and Measures approves possible changes to the International System of Units, including redefinition of the kilogram.” (プレスリリース), Sèvres, France: 国際度量衡総会, (2011年10月23日), http://www.bipm.org/utils/en/pdf/Press_release_resolution_1_CGPM.pdf 2011年10月25日閲覧。
  15. ^ Resolution 1 of the 25th CGPM (2014)”. Sèvres, France: International Bureau for Weights and Measures (2014年11月21日). 2014年12月14日閲覧。
  16. ^ Timetable for the future revision of the International System of Units News from the BIPM, BIPM, 2015-01
  17. ^ Draft Resolution A On the revision of the International System of Units (SI) Draft Resolution A – 26th meeting of the CGPM (13-16 November 2018),Appendix 3. "The base units of the SI",第3ページ目, 2018-02-06
  18. ^ Joint CCM and CCU roadmap for the adoption of the revision of the International System of Units 3ページ目、2019年の欄
  19. ^ 国際文書 国際単位系 (SI) 第 8 版日本語版 (2006) p. 42。
  20. ^ Rules and style conventions for expressing values of quantities”. SI Brochure, 8th edition. Bureau International des Poids et Mesures. pp. Section 2.1.1.5 (1967年). 2012年8月27日閲覧。
  21. ^ SI Unit rules and style conventions”. National Institute of Standards and Technology (2004年9月). 2008年2月6日閲覧。
  22. ^ Rules and style conventions for expressing values of quantities”. SI Brochure, 8th edition. Bureau International des Poids et Mesures. pp. Section 5.3.3 (1967年). 2015年12月13日閲覧。
  23. ^ Barry N. Taylor (2008) (.PDF). Guide for the Use of the International System of Units (SI). Special Publication 811. National Institute of Standards and Technology. http://physics.nist.gov/cuu/pdf/sp811.pdf 2011年3月5日閲覧。.
  24. ^ Units with special names and symbols; units that incorporate special names and symbols”. SI Brochure, 8th edition. Bureau International des Poids et Mesures. pp. Section 2.2.2, Table 3 (2006年). 2016年6月27日閲覧。
  25. ^ 技術情報”. スガツネ工業. 2015年10月29日閲覧。
  26. ^ The Unicode Standard, Version 8.0. Mountain View, CA, USA: The Unicode Consortium. (August 2015). ISBN 978-1-936213-10-8. http://www.unicode.org/versions/Unicode8.0.0/ch22.pdf 2015年9月6日閲覧。

外部リンク

SI単位
基本単位
 | 
組立単位

併用単位

【関連項目】

Category:SI基本単位

・・・・・・・・・・・・・・・・・・
出典:wikipedia
2020/07/13 07:37

HAPPY Wikipedia

あなたの考える「ケルビン」の意味を投稿しよう
「ケルビン」のコンテンツはまだ投稿されていません。
全部読む・投稿 

ケルビンスレッド一覧

・・・・・・・・・・・・・・・・・・
「ケルビン」のスレッドを作成する
ケルビンの」
友達を探す
掲示板を探す
このページ
友達に教える
URLをコピー

注目のキーワード

錦織圭/北島康介/2014_FIFAワールドカップ・アジア予選/サッカー日本女子代表/消費税/東京スカイツリー/ダルビッシュ有/イチロー/香川真司/野田内閣/復興庁/石川遼/HKT48/AKB48/ワールド・ベースボール・クラシック日本代表/黒田博樹/尖閣諸島/バレンタインデー/ONE_PIECE

キーワードで探す

 
友達を探す
掲示板を探す
ハッピーWiki
ハッピーメール
ハッピーランド
HAPPY NEWS
2010Happy Mail