このキーワード
友達に教える
URLをコピー

地球とは?

仮符号・別名 ラテン語: Terra英語: Earth
分類 地球型惑星
軌道要素と性質
元期:2014年5月23.0日TT = JD2 456 800.5
平均公転半径 7011149597870700000♠1.49597870700×10 m
近日点距離 (q) 1.471×10 km
遠日点距離 (Q) 1.521×10 km
離心率 (e) 6998167102200000000♠0.01671022
公転周期 (P) 7002365256363004000♠365.256363004(恒星年)
7002365242190402000♠365.242190402(太陽年)
平均軌道速度 29.78 km/s
軌道傾斜角 (i) 0.002°
昇交点黄経 (Ω) 174.838°
太陽の惑星
衛星の数 1()
物理的性質
赤道面での直径 12 756.274 km
半径 7006635675231400000♠6356.752314 km(極半径)
表面積 7008510065600000000♠5.100656×10 km
体積 7012108320700000000♠1.083207×10 km
質量 5.972×10 kg、7027597260000000000♠5.9726×10 kg
太陽との相対質量 3.0404×10
月との相対質量 81.3008
平均密度 5514 kg/m
脱出速度 11.186 km/s
自転周期 23時間56分4.0905秒(恒星日)
24 時間 + 1から2ミリ秒程度(平均太陽日 (LOD))
アルベド(反射能) 0.367
赤道傾斜角 23.44°(元期 2014年5月23.0日TT)
表面温度
最低 平均 最高
184 K | 288 K | 333 K

年齢 約46億年
大気の性質
大気圧 101.325 kPa
平均気温 15 ℃ (-70 ℃ – +55 ℃)
窒素 78.08%(体積比)
酸素 20.95%(体積比)
アルゴン 0.93%(体積比)
二酸化炭素 0.038%(体積比)
水蒸気 約1%(測定点の気候により変動)
■Template (■ノート ■解説) ■Project

地球(ちきゅう、: Terra: Earth)とは、人類など多くの生命体が生存する天体である。太陽系にある惑星の1つ。太陽から3番目に近く、表面に、空気中に酸素を大量に蓄え、多様な生物が生存することを特徴とする惑星である。

目次

  • 1 概要
  • 2 地球の運動
    • 2.1 公転
    • 2.2 自転
    • 2.3 赤道面の傾き
  • 3 物理的性質
    • 3.1 大きさ、質量、密度
      • 3.1.1 地球楕円体(準拠楕円体)の大きさ
      • 3.1.2 実測による大きさ
      • 3.1.3 ジオイドの大きさ
      • 3.1.4 質量・密度など
      • 3.1.5 地球楕円体の測定の歴史
  • 4 構造
    • 4.1 核
    • 4.2 マントル
    • 4.3 地殻
    • 4.4 水圏
    • 4.5 大気圏
    • 4.6 磁気圏
  • 5 生命
  • 6 衛星
  • 7 地理
  • 8 地熱
  • 9 地球の歴史
    • 9.1 形成
    • 9.2 分化
    • 9.3 地球システム
    • 9.4 将来
  • 10 地球像の変遷
    • 10.1 球体の地球
    • 10.2 地球全容の把握
    • 10.3 地球理解の深化
    • 10.4 地球を見る眼
  • 11 注釈
  • 12 出典
  • 13 参考文献
  • 14 関連項目
  • 15 外部リンク

概要

宇宙に浮かぶ地球。

地球とは我々人類が住んでいる天体、つまり我々の足元にある天体のことである。「」という字・概念と「球」という字・概念でそれを表現している。英語 (Earth) やラテン語 (Tellus, Terra) など他の言語でも多くは「大地」を表す語が当てられている。単語としての「地球」は中国語由来である。中国語の「地球」は明朝西学東漸期に初めて見られ、イタリア人宣教師マテオ・リッチ(1552年-1610年)の『坤輿万国全図』がこの単語が使用された最初期の資料である。清朝後期に西洋の近代科学が中国に入ってくると、大地球体説が中国の人々によって次第に受け入れられるようになり、「地球」(または地毬)という単語が広く使われるようになった。当時の新聞申報の創刊号には「地球説」に関する文章が掲載されている。日本には幕末から明治期に中国語から借入され、定着した。

地球は太陽系惑星の一つである。その形は、ほぼ回転楕円体で、赤道半径は6378kmほどで、極半径は6357km。(より精度の高い数字については後述の「物理的性質」の項を参照のこと)その運動に着目すると、365日強で太陽の周囲を一周し、24時間で1回 自転しており、太陽からの平均距離は1億4960万km。

その内部は大まかに地殻マントル、核の3部分から成っている。地球全体の平均密度は1cm当たり5.514gである。表面は大気に覆われている。

放射性元素による隕石年代測定と、アポロ計画によって持ち帰られたの岩石分析から、地球は誕生してから約46億年経過していると推定される。

太陽系の年齢もまた隕石の年代測定に依拠するので、地球は太陽系の誕生とほぼ同時に形成されたとしてよい。10個程度の火星サイズの原始惑星の衝突合体によって形成されたと考えられている。

太陽系内の惑星としては、太陽から2天文単位内の位置に存在し、岩石質外層とを主成分とする中心核を持つ「地球型惑星」に分類され、太陽系の地球型惑星の中で大きさ、質量、密度ともに最大のものである。

組成は地表面からの深さによって異なる。地殻に存在する元素は、酸素(質量比49.5%)とケイ素(同25.8%)が主体で、以下アルミニウムカルシウムナトリウムカリウムマグネシウムなどの金属元素が含まれる。この元素別質量百分率はクラーク数として纏められている。ほとんどはケイ酸塩など金属酸化物の形で存在する。

対照的に、中心部分は鉄やニッケルが主体である。地表面の71.1%は液体の()で被われており、地表から上空約100kmまでの範囲には窒素・酸素を主成分とする大気がある。大気の組成は高度によって変化する。

地球の運動

公転

円に近い楕円形の軌道を描いて太陽の周りを1.0000太陽年に1回公転し、また0.9973平均太陽日に1回自転している。天の北極から見て、自転、公転ともに反時計回りである。

この楕円の形は10万年ほどの周期で変化することが天文学者の研究でわかっている。楕円の軌道離心率は0.0167である。

1太陽年とは太陽が春分点から春分点まで一巡りする時間、すなわち季節が一巡する時間をいい、365.242 190 402である。地球の歳差により春分点が移動するため、1太陽年は、恒星が動かないものとして見た時に地球が太陽の周りを一周する時間として定義される1年(恒星年)より短い。1恒星年は365.256 363 004日である。

自転

詳細は「地球の自転」を参照
地球の自転を再現した動画。

地球が自転して元の位置に戻るのに要する時間を「自転周期」といい、2種類ある。

一つは恒星に対してのもので、これを恒星日という。正確には、春分点南中してから次に南中するまでの時間をいう。恒星日は、平均として23時間56分4.0905秒である。

もう一つは、太陽に対してのもので、これを平均太陽日 (LOD) という。厳密には天の赤道上を等速運動するとした仮想太陽(平均太陽)が、南中してから次に南中するまでの時間をいう。日常生活においては、平均太陽日の方が重要であり、時間の単位(国際単位系における位置づけ)又は暦の単位である「」はこれに基づいている。

平均太陽日(LOD:つまり日常にいうところの「1日」)の長さは、24時間ちょうどではなく、24時間 + 1から2ミリ秒程度である。LODの長さは一定ではなく、日々変動している(日#一日の長さ(LOD:Length of Day))。これに対して、時間の単位としてのは正確に86400秒である。

1太陽年や1恒星年を表現するのに用いられる1日は、太陽系天体の位置計算における時刻引数として使用される力学時 (Dynamical Time) における1日であるが、1平均太陽日と考えても特に問題はない。

平均太陽日は、6億年前には約22時間相当であり、その時点での1年は約400日相当であったと推測されている。また、地球誕生直後の1年は2000日相当と推測されている。このようにかつて早かった自転速度は徐々に遅くなっている。これは、月や太陽の引力によって起こる潮汐作用で動く海水が自転運動よりも遅く、摩擦抵抗として作用するためである。10億年後には地球自転は31時間になると試算されている。ただし、短期的(50年 - 100年程度という意味)には必ずしも長くなっているわけではなく、この30年間では短くなっている。地球の自転と一日の長さ (LOD) の詳細については、「地球の自転」、閏秒を参照のこと。

赤道面の傾き

地球の赤道面は、公転面に対して約23度26分傾いている。この傾きは自転軸の傾きでもある。季節変化の主な要因として軌道離心率と自転軸の傾きが考えられるが、地球の場合、自転軸の傾きが効いている。軌道離心率が0.0167ということは、太陽に最も接近したとき(近日点通過)と太陽から最も遠ざかったとき(遠日点通過)で、太陽約3個分距離が違うことを意味している(0.01天文単位が太陽直径程度である)。光量に直すと約7%の変動ということになるが、これよりも自転軸の傾斜を原因とする太陽高度の変化(光が差し込む角度)と日照時間が効くのである。太陽に最も接近するのは1月4日前後、最も離れるのは7月5日前後である。離心率や自転軸の傾斜は、木星などの引力の影響により数万年周期で変動している(ミランコビッチ・サイクルを参照)。

地球の赤道の傾きは、22 - 24度の範囲をおよそ4万1000年の周期で変化している。

物理的性質

大きさ、質量、密度

地球の中心から地表までの高さを示した図。地球は完全な球形ではなく、赤道付近が膨れた楕円体をしている。

地球楕円体(準拠楕円体)の大きさ

地球の形や大きさは、その使用目的によって必ずしも一意ではない。測量地図を作成するときの基準(これを測地系と呼ぶ。)としての地球を考えるとき、回転楕円体を想定する。この回転楕円体を特に地球楕円体という。様々な地球楕円体のうち、個々の測地系が準拠すべき地球楕円体を特に準拠楕円体と呼ぶ。日本だけでなく国際的にもっともよく使われている準拠楕円体はGRS80楕円体と呼ばれているものであり、したがって地球の形・大きさとして最もよく引用されている。

このGRS80の定義によれば、地球は赤道半径が正確に7006637813700000000♠6378137 m扁平率が正確に1/298.257222101回転楕円体である。極半径は約 7006635675231400000♠6356752.314 m(GRS80地球楕円体の定義からの誘導値)である。赤道半径のほうが極半径よりも約 7004213846860000000♠21384.686 m 大きい。

実測による大きさ

前項の値は、準拠楕円体を定義する場合の地球の大きさである。実際に観測される地球の大きさとしては、国際天文学連合が次の値を最良推定値として採用している。

上記の2つの数値から、

この値は、GRS80楕円体と比べて、0.4 m ほど小さい。

ジオイドの大きさ

現実の地球の形状をもっと詳細に考えるとき、平均的な海水面を大陸にも延長した仮想的な形状(ジオイド)を想定する。ジオイドは回転楕円体に近いとはいえ、地球内部の物質の分布が均一でないため、ずれが生じる。測地学では、地球楕円体とジオイドの違いをジオイドの高さと表現する。なお、地球表面は、天体間の引力、特にによる潮汐力による弾性変形によって、常に数センチから数十センチの伸縮があることに注意する必要がある。

質量・密度など

水星金星、地球、火星の比較図。

地球の質量は5.972 ×10 kgである。万有引力定数と地心重力定数から計算される。体積と質量から平均密度が求まり、5514 kg/m (5.514 g/cm) である。これはの5.5倍、花崗岩の2倍、の0.7倍程度に相当する。地球は太陽系で最も密度の高い惑星である。逆に、一番密度が低いのは土星である。水星金星の密度は地球に近い。

地球を構成する物質の種類と分布を探るには、地球内部での圧力上昇によって圧縮される程度を考慮して、1気圧下の密度に直す必要がある。このような補正を加えると地球の平均密度は約4100 kg/mになる。地球以外の惑星の内部構造は観測データがないのでモデルに依存するが、モデルによる補正平均密度の違いはそれほど大きくない。推定された補正平均密度は、水星は約5400 kg/m、金星は地球とほぼ同じで約4000 kg/m、火星は約3800 kg/mである。これら補正された平均密度の違いは金属の含有量の違いを反映している。一見、金属量は太陽から離れるにしたがって減少するように見えるが、その理由はわかっていない。

スケールハイト」も参照

地球楕円体の測定の歴史

近代的な測量により最初に計算された地球楕円体は、ピエール・ルイ・モーペルテュイが1738年に公表した、北極圏内のトルネ谷における子午線弧長の測量結果によるものであり、この測量結果と別途実施されていたフランスでの測量結果との突合により地球は扁球状であると結論づけているが、測量誤差の影響のため現代の値より扁平率が大きく見積もられている。現代の値に相当程度近い結果で初期のものとしては、ジョージ・エベレストによるインド地方の子午線弧長測量によるもので、1830年に公表された。この地球楕円体構造により、地球の中心点からの距離が最も大きいのはエベレスト山頂(北緯28° 標高8,848 m)ではなく南米のチンボラソ山頂(南緯01° 標高6,267 m)である(アフリカ大陸赤道直下のキリマンジャロは南緯03° 標高5,895 m)。

構造

詳細は「地球の構造」を参照
地球の構造 1:内核、2:外核、3:下部マントル、4:上部マントル、5:地殻、6:地表
地球の断面構造。組成鉱物相、力学性質から分類。

以下に、地表からの距離に応じた領域の名称を示す。境界の高度(深度)に幅があるのは、位置又は時間によって境界が変化するためである。

地球内部の構造は地表面での観測で得るしかない。その中で最も優れた方法は地震波の分析である。地震波解析によると、地球は外側から、岩石質の地殻、岩石質の粘弾性体であるマントル、金属質流体の外核、金属質固体の内核という大構造に分けられる。岩石質とはいっても、地殻とマントルでは化学組成が違う。外核と内核も金属質とはいうが、若干化学組成が異なると推定されている。

上部マントルには、地表面からの深さ100km付近に、地震波が低速になる層(低速度層アセノスフェア)がある。この層は部分的に溶融していると考えられ、上部の相対的に冷たく硬い層とは物理的に区別される。アセノスフェアの上にあり、上部マントルの一部と地殻とから成るこの層を岩石圏(リソスフェア)という。岩石圏は10数枚のプレートと呼ばれる板に分かれている。

プレートには2種類ある。大陸を含む大陸プレートと、海洋地域のみを含む海洋プレートである。海洋プレートは中央海嶺で生産され、マントル対流に運ばれて中央海嶺から離れる。その間にも中央海嶺では次々にプレートが生産されるので、海洋底が拡大する。大陸プレートは海洋プレートより相対的に軽いため、海洋プレートが大陸プレートとぶつかるとその境界でマントル中に沈み込み、日本海溝のような沈み込み帯を造る。海洋プレートには海溝を伴うものと伴わないものとがあるが、これは海洋底拡大の期間の違いによると考えられる。海溝があるものは、海洋底拡大が始まってから年月が経っている。前記のように、プレートはマントル対流によって運ばれる。海溝を伴う海洋プレートはそうでないものより拡大速度が速い。これは、マントル対流の他に、沈み込んだプレートに引っ張られる効果が加わるためとされている。

海洋底の年代は、放射性元素による年代測定によると2億年以内である。これは海洋プレートがこの程度の期間を経た後、地球内部に潜り込んでしまうためである。これに対して、大陸プレートは大部分が現代から30億年前までの間に形成されており、地球の歴史を通じて形成・成長してきたものと考えられている。特に古いものは安定陸塊とも呼ばれ、最も古い部分は約44億年前に形成された。

詳細は「核 (天体)#地球」を参照

中心核、コアとも言う。外核と内核に分かれ、液相の外核の半径は3480km、固相の内核の半径は1220kmである。外核は鉄とニッケルが主成分であると推定されているが、水素や炭素などの軽元素を10%以上含んでいるとしなければ、地震波速度と密度の説明ができない。内核は、地球内部の冷却に伴い、外核の鉄とニッケルが析出・沈降してできたとされており、現在でも成長が続いていると考えられている。ただし、内核の環境である320万気圧では金属鉄はその性質上固相を取るためともされる。地球中心部の圧力は約400万気圧、温度は物質組成とエネルギー輸送過程に依存するため正確にはわからないが、約5000K - 8000Kと推定されている。

対流や地球自転などに起因する外核の金属流体の動きによって電流が生じ、この電流により磁場が生じると考えられている。これが地球磁場である。このように地球の力学的な運動と結びついた磁場発生・維持機構を、ダイナモ機構という。

マントル

詳細は「マントル#地球」を参照

珪酸塩鉱物のマントルは深さ約2900kmまで存在し、地球の体積の83%を占めている。マントル全体の化学組成は、必ずしもわかっているわけではない。上部マントルは、かんらん岩または仮想的な岩石であるパイロライトから成るとする考えが主流であるが、下部マントルについては輝石に近い組成であるとする説もあり、定まっていない。

マントルは核によって暖められ、また自らの内部にも熱源を持つ。そのため固相のマントルはゆっくりと対流(プルームテクトニクス)をしながら熱を地殻に運んでいる。地殻に近い位置ではこのマントル対流は起こらず、地殻と一体化するようなふるまいをしておりプレートテクトニクスという水平運動を起こす。マントルの動きは解明しきれず不明瞭な点が多い。深発地震が700kmより深いところではほとんど起こらない点から、対流運動が二層で独立している説も提唱されている一方で、観測技術の向上に伴い、従来の定説では地震が起こらないと考えられてきた深さ900km付近でも地震が起きていることが判明したほか、岩石圏の沈み込みが核付近まで起こっているとの報告もあり、地震学的トモグラフィー法などにて構造推定が行われている。

地殻との境には地震波速度が不連続に変化する層があり、モホロビチッチ不連続面(モホ面)という。

地殻

火山噴火
詳細は「地殻」を参照

地殻とは地球の固体表面を指し、マントルと同じく珪酸塩成分から成る。地殻は熱伝導でしか地球内部の熱を伝えないため、マントルの対流と比べると効率が悪く、結果的に核やマントルの冷却を遅延させている。

組成差や構造から大陸地殻と海洋地殻に分類される。表面の55%を占める海洋地殻は玄武岩質で、厚さは平均6km、平均密度は3.0g/cmである。固化形成は2億年以内となる。対して大陸地殻は花崗岩質で、厚さ20-70km(平均35km)、平均密度2.8g/cm以下と厚く軽い。

地殻表面の構造は、プレート運動による造山運動火山活動、大気と水による風化や浸食、堆積などによって決まる。

水圏

詳細は「水圏」を参照

地球の地殻上に存在するは、氷河極氷など多様な形態を取っており、総量は13億8900万kmに相当する。そのほとんどは塩水である海で、13億5000万kmに当たる。海水の平均温度は3.9℃だが、緯度による差が大きい上に、季節や層によっても変化を持ちながら大規模な流動を起こす。これは蒸発降水などとともに水循環をもたらす。

大気圏

詳細は「地球の大気」を参照
太平洋上(軌道から見られる)の層積雲

地球を取り囲む大気酸素を20.9%含み、これは他の太陽系惑星には見られない特徴である。大気圧は海面上を1気圧と定義され、上空に行くほど低くなる。水循環を担いほとんどの気象現象が生じる対流圏は、上空になるにつれ温度と大気密度は低下する。しかし約17kmを境に水蒸気が凝結を起こす領域(コールドトラップ)に入り、これより上空は非常に乾燥した成層圏となる。ここでは上空に行くにつれ気温は‐60℃から上昇に転じる。また、水が無い環境のため紫外線によって酸素からオゾンが作られる領域(オゾン層)が20-50km付近に広がる。これが太陽紫外線の短波長を吸収し、地表の生命を護る役目と成層圏を暖める機能を持つ。また、成層圏は水を拡散させないため、地表の水が宇宙空間に拡散し失われることを防ぐ機能を持つ。

上空90kmの成層圏上域からは高度につれて温度が下がる中間圏に入り、ここからは電離層に当たる。温度低下は上空90kmで再び上昇を始め、この領域は熱圏と呼ばれる。

磁気圏

太陽風の影響を受ける地球磁気圏のシミュレーション
詳細は「磁気圏#地球磁気圏」を参照

地球磁場は平均3-7/10kTであり、地球の外側まで展開している。この磁場は太陽から吹き付けるプラズマの風(太陽風)とぶつかり、干渉する面(衝撃波面-磁気圏境界面)を形成しながら太陽方向では押しつぶされて地球半径の約10倍、夜側では1000倍程度の閉じた領域を持つ。

20世紀になり、地殻上空約100kmに電波を反射する層(電離層)が発見され、これが長距離通信を可能としたことから磁気圏の研究が進んだ。電離層は大気がイオン電子に分離している層であり、90-300kmの領域ではオーロラが発生する。

生命

詳細は「生命」、「生命の起源」、および「生物圏」を参照
地球の生命

地球は21世紀初頭において、知られている中で唯一生物(生命体)の確認されている天体である。生命は地表だけではなく、地下10km程度から上空100kmに至る広い範囲に存在する。大気の組成(酸素の濃度)は植物によって維持されている。 (例えば水が液体として存在できるような)生命に必須と思われる環境が成立している天文学的領域をハビタブルゾーンと呼ぶ。地球は、このハビタブルゾーンの中に存在している星である。

動物や植物、微生物といった生物が住む領域全体を生物圏と呼ぶ。生物圏全体を一つの巨大な生命体と見なすガイア理論もある。人類の活動が惑星地球、特に生物圏へ与える影響は大きく、悲観的な意見も少なくない。

地球を地殻、海洋や大気などのシステムの集合体として捉え、これらシステム相互の物質循環エネルギー循環によって地球という惑星を捉える考え方もある。このような捉え方では、人類が狩猟採集の生活様式を取り、自然界の一要素として存在している間は、人類を生物圏というシステム内部の要素として考えておけばよいとする。しかし人類が農耕など自らのために環境を改変するようになった時点で、人間圏という新しいシステムが地球に誕生したとみなし、新システムと既存のシステムとの相互作用によって地球表層環境が定まるという見方をする。このような見方に立つと、現在の地球は新しいシステムが誕生し、システム相互の新たな均衡に向かって変化しつつある時代に入ったということもできるのである。

衛星


半径 | 1737.4 km
質量 | 7.346 ×10 kg
軌道長半径 | 384,399 km
公転周期 | 27.321 662日
(27日7時間43分11.6秒)
詳細は「」を参照
月以外の地球の衛星」も参照

太陽系惑星のほとんどは衛星を伴っている。しかし、地球のは惑星に対する直径の比率が4分の1強、質量比では81分の1と、後者を見れば小さいように思えるが、惑星に限ればこれに次ぐものは海王星-トリトン系の800分の1であり、これを超えるものは準惑星である冥王星-カロン系の7分の1だけである。月の起源についてはさまざまな説が提案されているが、多くの支持を集めているものはジャイアント・インパクト説である。

月の公転軌道は地球半径の約60倍であり、毎年約3cmずつ遠ざかっている。地球と月は互いに重力の影響を与え合う潮汐作用が働いて変形し、長軸方向を向ける。このため誕生から長い期間をかけ、月は常に長軸方向の面を地球に向けるようになった。しかし地球は相対的に大きいため変形に時間がかかり、自転によって長軸方向が月の公転方向よりも先を向くようになる。すると地球自転の角運動量が月の公転へ輸送され、加速された月は遠心力で遠ざかり、対して地球の自転は遅くなる。この輸送は地球自転と月の公転が一致するまで続き、約100億年後には月軌道が地球半径の約85倍になったところで止まると考えられ、地球と月は常に同じ面を向け合うようになる。

惑星に対して大きな衛星が存在する事は、地球の自転軸を安定させる。潮汐力で結びついた地球と月は一つの角運動系である。すると、地球は月軌道までを含めた大きな独楽と扱え、回転軸は非常に安定したものになる。自転軸の変動は、地球では3度程のゆれに収まるが、金星や火星では数十度の変動が起こると考えられる。自転軸変動の大きさにつれて惑星気候への影響も大きくなるため、地球のように大きな衛星を持つ事が惑星環境を穏やかにする働きを持ち、生命進化を可能とする必要条件の一つとする意見もある。

地球の恒常的な自然衛星は月のみである。しかし、地球は近くに接近した地球近傍小惑星を捕獲し、一時的な衛星とする場合があり、そのような小惑星は常時50個ほどあるとするシミュレーションもある。実際の観測例は、2006年9月から2007年6月までの間に地球を3回周回した、直径3mから6mの2006 RH120がある。

地理

詳細は「世界の地理」を参照

地球の総面積510.066×10 kmで、そのうちが362 822×10km(地球表面の71.1%)、陸地が147.244×10km(同28.9%)である。

陸地は地球表面全体に均等にではなく北半球に偏って分布しており、陸地の多い側を陸半球(りくはんきゅう)、海の多い側を水半球(すいはんきゅう)と呼ぶ。陸地には面積の大きい大陸と小さいがある。海洋も深度の分布にはっきりした偏りがあり、深度4000 - 5000mに全海洋の31.7%の面積を占める海洋底という構造がある。1000m単位で深度ごとの分布面積を区分すると、深度3000mから6000mにいたる部分が全海洋面積の73.8%を占める。

地熱

地球は内部に地熱を持ち、約44.2兆ワットの熱を宇宙空間に放出している

・・・・・・・・・・・・・・・・・・
出典:wikipedia
2019/06/06 07:18

HAPPY Wikipedia

あなたの考える「地球」の意味を投稿しよう
「地球」のコンテンツはまだ投稿されていません。
全部読む・投稿 

地球スレッド一覧

・・・・・・・・・・・・・・・・・・
「地球」のスレッドを作成する
地球の」
友達を探す
掲示板を探す
このページ
友達に教える
URLをコピー

注目のキーワード

錦織圭/北島康介/2014_FIFAワールドカップ・アジア予選/サッカー日本女子代表/消費税/東京スカイツリー/ダルビッシュ有/イチロー/香川真司/野田内閣/復興庁/石川遼/HKT48/AKB48/ワールド・ベースボール・クラシック日本代表/黒田博樹/尖閣諸島/バレンタインデー/ONE_PIECE

キーワードで探す

 
友達を探す
掲示板を探す
ハッピーWiki
ハッピーメール
ハッピーランド
HAPPY NEWS
2010Happy Mail