このキーワード
友達に教える
URLをコピー

津波とは?

2011年の東北地方太平洋沖地震の際に発生した津波によって水没した仙台港付近の上空からの写真。JX日鉱日石エネルギー仙台製油所より黒煙が上がっている
津波の発生原理を示す図
三次元の津波シミュレーション動画

津波(つなみ、Tsunami)は、地震や火山活動、山体崩壊に起因する海底海岸地形の急変により、海洋に生じる大規模なの伝播現象である。まれに隕石衝突が原因となったり、で発生したりすることもある。強風により発生する高波台風低気圧が引き起こす高潮副振動(セイシュ)、原因が解明されていない異常潮位とは異なる。

1波1波の間隔である波長が非常に長く、波高が巨大になりやすいことが特徴である。地震による津波では波長600km、波高5m超のものが生じた事がある(津波が陸上に達するとこの値は大きく変わる)。

津波という現象は、例えるならば大量の海水による洪水の様な現象であり、気象など他の要因で生じるとは性質が大きく異なる。大きな津波は浮遊物と共に深くに浸入し、沿岸住民の水死や市街・村落の破壊など、種々の災害を発生させる。

目次

  • 1 概要
  • 2 津波をもたらす原因
    • 2.1 地震による津波
      • 2.1.1 基本
      • 2.1.2 津波地震
      • 2.1.3 遠隔地津波
    • 2.2 その他の要因
  • 3 津波現象の特徴
    • 3.1 波の周期・波長
    • 3.2 波高
      • 3.2.1 津波の高さと被害の関係
    • 3.3 伝播
    • 3.4 速度
    • 3.5 電磁場変動
  • 4 津波被害の態様
  • 5 津波被害の軽減・回避
    • 5.1 津波と津波防災の研究
    • 5.2 津波の到達と高台への避難
      • 5.2.1 津波防災地域づくり法による区域指定
      • 5.2.2 伝承・思い込みとその影響
    • 5.3 津波シェルターへの避難
    • 5.4 船舶
  • 6 津波被害からの復旧・復興
  • 7 津波の監視体制
    • 7.1 日本
      • 7.1.1 東北地方太平洋沖地震(東日本大震災)後
      • 7.1.2 津波情報の充実と問題点
    • 7.2 太平洋津波警報センター(太平洋など)
  • 8 その他の地域
    • 8.1 インド洋
    • 8.2 北アメリカ
    • 8.3 大西洋
    • 8.4 カリブ海
  • 9 津波被害の歴史
    • 9.1 最近のおもな被害例
  • 10 津波被害の予想
    • 10.1 津波予測
      • 10.1.1 津波の襲来確率予測
    • 10.2 組織的な災害対策
    • 10.3 津波防災の問題点
  • 11 津波の表現
  • 12 人間以外の生物への影響
  • 13 文化的影響
    • 13.1 津波を題材にした作品
    • 13.2 その他
  • 14 注釈
  • 15 脚注・参照
  • 16 参考文献
  • 17 関連項目
  • 18 外部リンク

概要

20世紀後半以降 "Tsunami" は、世界で広く一般にも使用される共通語になった。そもそも日本語における「津波」の語源(後述)は、沖で被害が出なくても津(=)で大きな被害が出ることからきている。

津波は、沖合から海岸に近づき海底が浅くなるにつれて波高が高くなり、海岸線では沖合の数倍に達する。湾口で2mのものが湾奥で5m超になった事例もある。また海底が浅くなるにつれて波長は短くなるが、海岸線でも数百m - 数km程度ある。

上陸した津波は、依然として大きな水圧を伴った高速の波として、数分から数十分の間押し寄せ続けたら(押し波)、今度は海水を沖へ引きずり続け(引き波)、しばらくしたら再び押し寄せて(押し波)、という具合に押し引きを繰り返し、やがて減衰していく。大きな津波は、陸上にある建物、物品、そして人間を押し流し、景色を一変させ、甚大な被害をもたらすことがある。また大きな津波は海岸に続く河川を遡るほか、海上でも被害をもたらすことがある。

特にリアス式海岸の湾奥では狭く細長く深いが津波の威力を集積させるため、また海に突き出たの先端では周囲からの回り込みの波が重なるため、他の海岸に比べて同じ津波でも被害が大きく、より小さな津波でも被害を受けることが知られている。

また海岸では、日本三陸海岸の港町のように津波を防ぐために防潮堤、あるいは通常の波浪を防ぐなどの目的で堤防が築かれている所があり、これらは津波の被害を軽減する役割を果たす。一例として、2011年に発生した東北地方太平洋沖地震(M9.0を観測)に伴う津波は沿岸の広い範囲に甚大な被害をもたらしたが、岩手県下閉伊郡普代村普代水門太田名部防潮堤(ともに高さ15.5m)や同県九戸郡洋野町の防潮堤(高さ12m)は決壊せず、津波の影響を大幅に減衰させて集落進入を防いだ結果、軽微な被害にとどまっており、特に普代村においては被災民家および死者は発生しなかった。

その一方で津波被害をカバーできない場合もある。防潮堤の高さや強度が不足している場合のほか、津波を起こした地震で損壊したり地盤沈下により海面が上昇したりして、堤防の機能が弱まることがある。また防潮堤などにある水門は人が駆けつけることができない場合や、停電などの影響で閉められないことがある。こうした事例から、防潮堤による津波対策を再考する動きもある。

津波をもたらす原因

海底地形や海水の体積の短時間での変化、海水への衝撃波によって引き起こされる非常に長周期の波である。

海における津波の発生原因として、海底で接触し合っているプレート同士の弾性反発に起因する急激なずれ、つまり浅海底での地震が最も大きな割合を占める。このほか、海岸地域で起こる地滑り海底火山の活動、海底地すべりなどの地質学的な要因があげられる。また、過去においては後述するように海洋への隕石の落下により引き起こされた事例も確認されている。

地震による津波

基本

津波の原因として最も一般的なものは、海底地震すなわち震源地が海底である大地震であり、記録に残る津波の大部分はこれによるものである。

断層が活動して地震が発生した時に、海底にまで断層のずれが達して海底面が上下に変化すると、非圧縮性流体である海水が上下に移動させられてその地形変化が海面に現われ、水位の変動がうねりとなって周囲に広がっていき、津波となる。地震の揺れ(地震動地震波)で生じる海震とは異なる。大地震においては、数十kmから時に1,000kmを超える長さ、数十kmから数百kmの幅の範囲で、数十cmから数十mという規模で、数十秒から数分の間に、海底が一気に隆起する。この体積変化のエネルギーは巨大で波長が非常に長いため、ほとんど失われることなく海水面の隆起や沈降に変換されて津波を生じる。

正断層による海底の沈降によっても、逆断層による隆起によっても津波は起こる。マグニチュード8級の地震では震源域の長さが100km以上になる事もあり、それに伴う地形変化も広い面積になるので、広範囲の海水が動いて大規模な津波を起こす。ただし、後述の津波地震等の津波を巨大化させる別の原理があるため、地震の大きさ・揺れの大きさと、津波の大きさは、必ずしも比例していないため防災上注意が必要である。津波という現象の発生には海底の地形が大きく変わる事が重要で、大地震による海底の断層とそれによる隆起や沈降は最も津波を起こしやすい現象といえる。ただし、海底の断層運動があっても、横ずれが卓越し隆起や沈降がなければ大きな津波は発生しない。原理は、入浴中に浴槽の下から上へ、突き上げるように湯を手で押し上げて見るのが理解し易い。押し上げられた湯は塊りとなって水面まで持ち上がってから周囲に広がるはずであり、これが巨大になったのが津波である。なお、津波を生じるためには震源がある程度浅くなければならず、震源が概ね100kmより深いものでは津波は発生しないとされている。

地震津波は海溝付近で発生することが多い。海溝付近では数十年 - 数千年の間隔でマグニチュード7 - 9の海溝型地震が発生し、その際に現れる海底の大断層によって津波が発生する。20世紀後半以降、日本付近の海溝型地震は同じ地域でもその発生規模と間隔によって数種類あることが明らかになってきており、数十年間隔で海溝の中の特定の領域の1つで発生する地震(巨大地震)、数百年間隔で海溝の中の隣接した複数の領域で発生する地震(連動型巨大地震)のほか、津波堆積物による推定では数千年間隔で更に広範囲の隣接した領域で発生する地震(連動型超巨大地震)などがあると考えられている。後者ほど震源域が長いので、津波に襲われる地域は広くなる。日本付近では、千島海溝日本海溝伊豆・小笠原海溝相模トラフ南海トラフ琉球海溝など太平洋側のすべての地域でこのタイプの津波が発生する可能性がある。

また、逆断層型や正断層型の内陸地殻内地震(断層型地震、直下型地震)や海溝型ではないプレート境界型の地震が海底で発生した場合でも津波が発生する。日本海東縁変動帯に当たる北海道東北地方北陸地方日本海側はプレート境界型地震、その他では内陸地殻内地震による津波の発生の可能性がある。このタイプの津波も日本近海では過去何度も発生していて、1983年日本海中部地震や1993年北海道南西沖地震などがある。

なお、断層角が垂直に近い高角逆断層型の地震では下盤側で、正断層では上盤側でそれぞれ沈降が発生するため、その側に面した沿岸では引き波が第一波となることがある。津波を生じる地震は海溝型だけではなく、同じ沿岸でも地震によっては押し波となる場合もあるので、防災上は注意を要する。

地震津波の大きさを表現する指標の1つとして「津波マグニチュード Mt」というものがある。津波の規模は地震の規模に比例するという性質を利用して、複数の地点における津波の波高と震源からの距離から、マグニチュードで規模を算出する。

津波地震

また、「ゆっくり地震」或いは「津波地震」と呼ばれる、海底の変動の速さが遅い地震があることも知られている。これは、人が感じる短周期の成分では比較的小さな揺れ(地震動)しか発生しないため一見すると小規模の地震のようだが、長周期の成分が卓越しているだけであって、実は総エネルギーが大きな地震であり、海底面の変動も大規模であるため、予期せぬ大津波によって被害がもたらされる事がある。1896年(明治29年)の明治三陸沖地震津波がその例で、原因となった地震については震度分布から長らくマグニチュード 7.6、あるいは短周期の地震動の観測に基づいて表面波マグニチュード Ms 7.2 - 7.4とされてきたが、その後津波マグニチュード Mt 8.2 - 8.6、あるいは津波の大きさを考慮してマグニチュード8 1/4に改められ、理科年表では2006年版以降この値が採用されるなど近年見直しがなされた。津波地震では前記の例の通り、表面波マグニチュードより津波マグニチュードの方が大きくなる。

津波地震となる要因にはいくつかあり、

  1. 断層破壊が通常に比べゆっくりと進行することで、地震動や海底地形変化のエネルギーが通常よりも高い割合で津波のエネルギーに変換される。プレート境界部分に柔らかい堆積物があると、断層破壊がゆっくりとなることが知られている。
  2. 起震断層の角度が非常に浅い場合、地震動が短周期であっても津波の周期が通常より長くなり、長周期の津波は減衰しにくいため津波が高くなる。
  3. 主破壊による起震断層とは別に、地震によって海溝付近の付加体と呼ばれる堆積層に枝分かれした分岐断層が発生し、その隆起によって津波が高くなる。
  4. 地震動や海底地形変化によって発生した、大規模な海底地すべりによって津波が高くなる。
  5. 地殻変動によって海底下の堆積層にマグマが貫入し、その隆起によって津波が高くなる。

などが挙げられる。1,2は長周期の津波、3,4,5は短周期の津波である。上記1.の要因により津波地震は、海溝付近のプレート境界のうち海溝軸に近い浅い部分を震源域とした地震で起こりやすい。1896年の明治三陸沖地震津波は上記1.によって津波地震になったと考えられている。また、2011年東北地方太平洋沖地震津波は連動型地震であったため、地震発生初期にまずプレート境界浅部で上記1.の要因による津波を発生させたあと、プレート境界深部にも断層破壊が及んで強い地震動が発生したあと、再びプレート境界浅部で破壊が起こって津波が増幅したと考えられている。

津波地震」を参照

遠隔地津波

地震津波は大規模で、遠方まで伝わるため、地震を感じなかった地域でも津波に襲われる場合がある。これを遠隔地津波と言う。津波の到達まで時間があるので避難しやすく、人的被害防止は容易であるが、情報の伝達体制が整っていないと不意討ちを受ける形になり、被害が大きくなる。後者には1960年チリ地震津波の際のハワイや日本、2004年スマトラ沖地震の時のインド洋沿岸諸国、東北地方太平洋沖地震におけるハワイやアメリカ合衆国西海岸などの例がある。

球形の地球表面では、発生した津波のエネルギーは地球の反対側の地点(対蹠点)に再び集中する。そのため、チリ沿岸で発生した津波は太平洋を挟んで反対側の日本に被害を及ぼしやすい性質がある。また同様の原理により、太平洋の中心に位置していて、かつ5,000mの深海底に囲まれたハワイは、環太平洋各地からの津波を減衰しにくいまま受けるため、津波被害を受けやすい。

その他の要因

海洋だけで無く山間部でも、同様に山体崩壊が起因でダム湖などの湖沼でも発生する。実際にイタリアバイオントダムでは、地すべりにより100mの津波が発生して2,000人以上が死亡している。また、岩手・宮城内陸地震では荒砥沢ダム上流部で山体崩壊を誘発し、津波が発生している。平成23年台風12号において、深層崩壊による山体崩壊が発生し、土砂が流れ込んだ河川で津波の性質を持つ段波が発生した。

湖底堆積物の崩落

トゥールのグレゴリウスなどの記述では西暦563年にレマン湖南西岸のジュネーヴがトレデュナム・イベント(Tauredunum event)と呼ぶ津波状の水害に襲われたとあるが、その時に地震があったとの記録はない。2012年10月28日ジュネーブ大学の地質学者は東端から流入するローヌ川によってできた厚さ5m、湖中心・最深部まで約10km長、幅約5kmの湖底堆積物が崩落して津波が発生し、シミュレーションにより70後に襲われたとの研究結果を発表した。採取した堆積物は放射性炭素年代測定により381年から612年のものと判明した。地質学者は湖でも津波は起こりうるとして再発も警鐘している。

海岸線に近い場所で起きる火山の山体崩壊

海岸線に近い場所で起きた火山山体崩壊等で、大量の土砂や岩石が海になだれ込んだ際にも津波が発生する。大部分は地震津波に比べてはるかに規模は小さいが、状況によっては地震が原因の津波と遜色がないほどの大津波が発生することもあると言われ、また発生地点に接して人口密集地帯があると大被害を引き起こす。

海底火山と海底地滑り

海底火山に起因する津波もあるが、海底の地形に大きな変動がなければ、爆発活動だけでは大きな津波にはならない。また、仮に海底地形の変動があっても、その変動量と範囲が小さければ津波の波源も小さくなり、発生した津波はすぐに分散してしまう。1952年(昭和27年)に伊豆諸島で起きた明神礁の活動に際しても、八丈島で小規模な津波が観測された程度である。海底に生じた地滑りが津波を起こすかどうかについては、専門家の中に賛否両論あるが、実際に海底地すべりで起こったことが確認された津波の例はほとんどない。

1512年阿波国(徳島県)で多数の死者を出した「永正の津波」は押し寄せた範囲が狭く、原因は地震ではなく、四国南東沖24kmの海底で発生した地滑りで引き起こされた可能性が、徳島大学の海底地形の分析により指摘されている。

隕石
海に落下する隕石の想像図

巨大隕石が海に落下すれば津波が起こると考えられる(衝突津波)。歴史時代には明確に証明された衝突津波はないが、メキシコ湾カリブ海沿岸各地には、約6550万年前の天体衝突時に発生した津波の津波堆積物が残っており、津波高は約300mと推測されている。

爆発事故

海上で超巨大規模の爆発事故が発生した場合は、それだけで津波を引き起こすことがある。1917年にカナダはハリファックスの入り江で起きた船の爆発事故(ハリファックス大爆発)により津波が発生し、ハリファックスの港町を押し流して甚大な被害を出したことがある。

類似現象

伊勢湾台風での事例のように台風によって津波に匹敵する威力の高波が発生することもあるが、これはあくまで高潮であり、津波とは区別される。しかしながら、台風が原因の土砂崩れによる津波は、直接の要因が土砂崩れであるため津波となる。また、サンゴ礁が存在する海岸では高潮が津波の特性を持つことがあり、波群津波(段波状サーフビート)と呼ばれる。

津波現象の特徴

2004年12月、プーケット島を襲った津波。波頭が押し寄せた後も海水が流れ込み続け、海面が高まったままの状態が続いている
アラスカにある津波警戒標識。4度目の波が一番高く描かれている

反射屈折干渉などの「」の性質を持っていて、条件により変化するため、予測されないところで被害が生じる場合がある。波の中では孤立波、その中でも伝播中に形状や速度が変化せずお互い衝突しても安定している「ソリトン」に分類される。

津波の物理的性質は風浪や、天文潮すなわち干潮・満潮等の規則的な潮汐とは異なっている。以下、津波の諸特性について述べる。

波の周期・波長

津波は周期や波長が長いという特徴がある。これは津波の波源域が広く、波長がその影響により決まるためである。一般に水面に見られる津波でない波は、風によりできた風浪である。その風浪の周期は長いものでも10秒程度、波長は通常は150mくらいである。これに対し津波は、短い周期でも2分程度、長いものでは1時間以上にもなり、波長も100kmを越す例もある。周期は超長周期地震動と重なる部分があり、潮汐よりは短い。このため、津波が内陸に押し寄せる際の水位の高まりは、あたかも海面自体が上昇したような状態になって、大きな水圧や流れによる破壊力が加わる。また津波が引く際にも、一旦高くなった海面が、沖の低くなった海面に向かって引いていく形になり、やはり大きな破壊力を見せ付ける。じっさいにもチリ津波では、函館の実例の水位差は押し波が2m、引き波が3mであり、引きが強かった。このような場合は押し波で破壊された物やもともと陸にあった物などが海に持ち去られる被害が大きくなる。

津波は通常複数回押し寄せ、10回以上に及ぶこともある。第2波、第3波などの後続波が最も大きくなる傾向があり、その後次第に小さくなっていく。また、第2波、第3波は1時間以上後に押し寄せてくる場合もあり、完全に津波が収まるまでに地震発生から数日を要する場合もある。

波高

津波が浅い海岸に達すると、津波の速度は遅くなり、波高は高くなる。
津波の測り方

津波の高さを表す表現がいくつかある。

外洋では津波の波高は数十cmから2mか3m程度であり、波長は100kmを越えるので、海面の時間変化はきわめて小さい。津波が陸地に接近して水深が浅くなると速度が落ちて波長が短くなるため波高が大きくなる。ただし、通常は、単に水深が小さくなっただけでは極端に大きな波にはならない。リアス式海岸のような複雑に入り組んだ地形の所では、局地的に非常に高い波が起きる事がある。津波の波高は水深の4乗根と水路幅の2乗根に反比例するので、仮に水深160m、幅900mの湾口に高さ1mの津波が押し寄せ、湾内の水深10m、幅100mの所に達した場合、波高は水深の減少で2倍、水路幅の減少で3倍になるため、総合すると波高は6mになる。そのため、V字型に開いた湾の奥では大きな波高になりやすい。

津波の記録は一般に検潮儀で測定される。しかし、巨大津波そのものの波高を正確に測定する事は困難である。これまでの大津波の波高とされる記録は、実際には波の到達高度(遡上高)で示されている。遡上高は、陸に押し寄せた津波が海抜高度何mの高さまで達したかを示す値であるため、現場の調査によって正確に決定できる利点がある。V字型の湾など地形によっては、津波は、波高自体が高くなると共に非常に高い所にまで駆け上がることがしばしばある。つまり、津波の到達高度(遡上高)は実波高(海岸での平均海水面からの高さ)より高くなる場合が多い。日本において確実とされる津波の最大波高は1896年の明治三陸沖地震津波の際の38.2mであるが、これはV字型の湾の奥にあった海抜38.2mの峠を津波が乗り越えたという事実に基づく到達高度の値である(海岸での津波高ではない)。

1958年7月9日(現地時間)、アラスカの南端の太平洋岸にあるリツヤ湾 (Lituya bay) で岩石の崩落による津波が起き、最大到達高度は海抜520mに達し、津波の波高の世界記録とされている。リツヤ湾氷河の侵食によるフィヨルドで、幅3km、奥行き11km程の長方形に近い形で内陸に入り込んでいる。湾奥に左右に分かれた小さな入江があり、問題の津波はそのうちの北側の入江に発生したものである。波の発生を直接目撃した者はいないが、後の現地調査と模型実験により詳細が明らかにされている。地震により入江の片側のおよそ 40度の傾斜の斜面が崩壊、9,000万トンと推定される岩石が一塊になって海面に落ちたため、実高度150m以上の水しぶきが上がり、対岸の斜面を水膜状になって駆け上がって520mの高度に達したものである。その後、波は高さ15mから30mで湾奥から湾口に進み、太平洋に出ると共に急速に消滅した。以上のように、この波は津波と言うより水跳ねに近いもので、英文の報告書でも "giant wave" または "biggest splash" と表現されている。

なお、リツヤ湾では1853年1854年に120m、1936年に147mの大波(いずれも到達高度)が起こったことも明らかになっている。これは、湾周囲の山林に植生する古い樹木を複数伐採して年輪を調べたところ、該当年の年輪の海側に、大きな外傷を受けた痕跡が残っていたことから判明したものである。

リツヤ湾大津波」を参照

2011年12月5日アメリカ航空宇宙局は、人工衛星ジェイソン1」の観測により、東北地方太平洋沖地震に伴って発生した津波が太平洋の海底山脈などによって方向を変え、震源地から何千キロメートルも離れた海上で2つの波が融合した結果、より威力をもった津波となったことを初めて確認したと発表した。

津波の高さと被害の関係

陸上での浸水高と被害の関係について、東北地方太平洋沖地震の被災地での調査によると、浸水高が2mを超えると木造家屋の構造破壊が発生し始め全壊率が急増するとともに建物全体の流失率が増え始め、さらに4mを超えると木造家屋の多くが流失するという結果が出ている。

一方、津波警報等が対象とする、海岸での波高と被害の関係について、東北地方太平洋沖地震や2010年のチリ地震における日本の被災地での調査によると、

以上のような傾向が報告されている。

津波の高さと被害の程度の目安(首藤(1992,1993)、および気象庁改変に追記)
浸水高 m 0.2 | 0.5 | 0.7 | 1 | 2 |  | 4 |  |  | 8 | 16 |  | 32
木造家屋  | (漂流物の直撃によって被害が出る場合がある) | 部分的に破壊される | 全面的に破壊される
石造家屋  | 持ちこたえる |  | 全面的に破壊される
RC造ビル  | 持ちこたえる |  | 全面的に破壊される
防潮林  | 漂流物を阻止し、被害は軽微 | 漂流物を阻止し、被害は部分的 | 効果がなく、被害は全面的

沿岸での波高 m 0.2 | 0.5 | 0.7 | 1 | 2 | 3 | 4 |  |  | 8 | 16 |  | 32
漁船  | 被害が出始める | 被害率50% | 被害率100%
養殖いかだ  | 被害が発生する
音  | 海鳴りや暴風雨の音のような、前面が砕けた波による連続音
 | 雷鳴のような、浜で巻いて砕けた波による大音響。遠くまでは聞こえない
 | 遠雷や発破音のような、崖に衝突する大音響。かなり遠くまで聞こえる
浸水  | 海岸堤防の外側(海側)で浸水が生じうる | 海岸堤防の内側(内陸側)でも浸水が生じうる
警報・注意報
(日本) 津波注意報
海の中にいる人はただちに海から上がって、海岸から離れる | 津波警報
沿岸部や川沿いにいる人は、ただちに高台や避難ビルなど安全な場所へ避難 | 大津波警報
沿岸部や川沿いにいる人は、ただちに高台や避難ビルなど安全な場所へ避難

伝播

津波は、水深が一定の海域で発生した場合には発生源を中心に同心円状に広がって行く。しかし、地震津波の場合、多くの地震が陸地近くの海域で起こるため、波のおよそ4分の3は海岸に向かい4分の1が外洋に向かう。たとえば1960年のチリ地震津波においては、南米チリ沖で生じた津波は最初は同心円を描いて伝播した。その後、チリの海岸線に対し垂直方向に進む波以外は次第に進路がチリの海岸向きに屈折した。結局、波の4分の3がチリ海岸に戻り、4分の1は太平洋を直進してハワイや日本に達したと考えられている。これは、大陸斜面を進む波は水深の大きい沖合いで速度が速く、沿岸寄りでは遅くなるためである。実際、同じ環太平洋地域でありながら北アメリカ西岸やオセアニアなどでは目立った津波被害は起こっていない。津波は物理的にはいわゆる孤立波であり、海のソリトンとも呼ばれる。

速度

津波の伝播する速度は水深と波高により決まる。大陸棚斜面から外洋に出ると水深は4,000m前後でほとんど一定になり、また水深に比べて波高は問題にならないくらい小さいので、外洋での津波の速度は、重力加速度(9.8m/sec²。便宜的に10m/sec² として差し支えない)に水深を乗じた値の平方根にほぼ等しい。式で表すと次のようになる。dは水深(単位はm)、速度は秒速 (m/sec) で示される。

gd{\displaystyle {\sqrt {gd}}}

これを時速 (km/hour) に直すには3.6倍すればよい。これにより、水深1,000mで時速360km、水深4,000mで時速720kmとなる。沿岸では水深が浅くなり、そのため津波の波高が増すので、上の式をそのまま適用すると不正確な値となるため、次の式を用いるのがよい。Hは水面上の波高である(単位はm)。

g(d+H){\displaystyle {\sqrt {g(d+H)}}}

ここから、水深10m、波高6mの場合の津波の速さはおよそ時速46kmとなる。なお、1960年チリ地震津波はチリから日本まで平均時速750kmで、2011年の東日本大震災では宮古市重茂半島で平均時速115kmで、沿岸まで到達している。

電磁場変動

海水は良質な導体であることから地磁気の影響下で運動をすると、誘導電磁場が生じている。従って、常時流動している潮流でも発生しているが、津波の際には潮流で生じるのとは別な誘導電磁場が発生するため、この電磁場の観測を行うことで結果的に津波に伴う海水の変異が観測できる。また、電離層にも影響を与え、津波発生から数分後から1時間程度継続する「電離圏プラズマの減少(津波電離圏ホール)」が生じ、GPS-TEC(GPS受信点から衛星までの視線方向に対する電離圏全電子数)観測によって観測が行える。

津波被害の態様

津波は、同じ高さの気象性の波浪に比べて波長が非常に長いため、一波が押し寄せるだけで大量の海水が海岸を襲う。

津波による水の圧力は非常に大きく、沿岸の広い地域に被害を与える。人的被害は水深 30cm でも発生し、被害の程度は「波高」(浸水高)と「流速」が密接に関係しているが、浸水深さが 2m、4m、8m と深くなると被害の様相が大きく変化する事が報告されている。東北地方太平洋沖地震では、宮城県内で2mを境に流失率が増大し6mでの流失率は80%程度と報告されている。

浸水高と被害程度の目安(気象庁による資料を改変)
津波波高 1m 2m 4m 8m 16m 32m
木造家屋 部分的破壊 | 全面破壊
石造家屋 持ちこたえる |  | 全面破壊
鉄筋コンクリートビル 持ちこたえる |  | 全面破壊
漁船  | 被害発生 | 被害率 50% | 被害率 100%
防潮林 被害軽微 漂流物阻止
津波軽減 | 部分的被害
漂流物阻止 | 全面的被害
無効果
養殖筏 被害発生

例として、2mの普通の波と津波との違いを比較する。2mの普通の波は、海上で普段から偏西風や低気圧(気流)、月の引力などの影響を受けるため、少なからずデコボコが生じる。このデコボコの差が2mあるだけで、波長や波を形成する水量は比較的少なく、海岸に達した所で沿岸地域に被害をもたらす事はそう多くはない。これに対し2mの津波は、地震などによる海底の隆起または沈下により海水面自体が普段より2m盛り上がり、それがそのまま海岸に向かって伝わっていく。言い換えれば、2mの急激な海面上昇が起こることに近い。

つまり、2mの普通の波は海岸に少量の海水をかける程度であるのに対して、2mの津波は何kl(キロリットル)もの海水が一気に海岸地域を襲い、自動車や多くの人を簡単に飲み込み沖へ引きずり込んでしまう程の威力がある。2mの「波」の水量は2(m)×波長数(m)×0.5×約0.5×海岸の距離(m)で、海岸1mに押し寄せる波の水量は波長3mとして1.5m(=1500リットル)、ドラム缶数本分である。一方、2mの「津波」の水量は2(m)×波

・・・・・・・・・・・・・・・・・・
出典:wikipedia
2018/07/14 14:03

HAPPY Wikipedia

あなたの考える「津波」の意味を投稿しよう
「津波」のコンテンツはまだ投稿されていません。
全部読む・投稿 

津波スレッド一覧

・・・・・・・・・・・・・・・・・・
「津波」のスレッドを作成する
津波の」
友達を探す
掲示板を探す
このページ
友達に教える
URLをコピー

注目のキーワード

錦織圭/北島康介/2014_FIFAワールドカップ・アジア予選/サッカー日本女子代表/消費税/東京スカイツリー/ダルビッシュ有/イチロー/香川真司/野田内閣/復興庁/石川遼/HKT48/AKB48/ワールド・ベースボール・クラシック日本代表/黒田博樹/尖閣諸島/バレンタインデー/ONE_PIECE

キーワードで探す

 
友達を探す
掲示板を探す
無料コミックを探す
占い・診断
着メロを探す
GAMEを探す
デコメを探す
きせかえツールを探す
FLASH待ち受けを探す
ハッピーWiki
ハッピーメール
ハッピーランド
HAPPY NEWS
2010Happy Mail