このキーワード
友達に教える
URLをコピー

緯度とは?

概念

技術

基準(歴史)
NGVD29 | 海面基準点1929年
OSGB36 | イギリス陸上測量1936年
SK-42 | Systema Koordinat 1942 goda
ED50 | 欧州基準点1950年
SAD69 | 南米基準点1969年
GRS80 | 測地学参照システム1980年
NAD83 | 北米基準点1983年
WGS84 | 世界測地学システム1984年
NAVD88 | 北米垂直基準点1988年
ETRS89 | 欧州陸上参照システム1989年
GCJ-02 | 中国の暗号化された基準点2002年


緯度(いど、英語: Latitude, ドイツ語: Breite)とは、経緯度(=経度・緯度。すなわち天体表面上の位置を示す座標)の一つである。以下特に断らない限り、地球の緯度について述べる。余緯度とは緯度の余角。

概要

緯度は、その地点における天頂の方向と赤道面とのなす角度で表される。赤道が緯度0となり北を北緯、南を南緯といい北極南極が90度となる。また北緯に+(プラス)、南緯に-(マイナス)を付けて表す場合もある。1度よりも細かい緯度は、1度=60=3600と分割して表現する(0.1度は6分となる)。

同じ緯度の点を結んだ線を緯線という。「緯」とは織物の横糸の意味で、経緯線を織物に見立てたものである。メルカトル図法の地図では、緯線は赤道に平行な直線となる。経線を子午線というのに対し、子午線の対義語として(東)と(西)とを結ぶ線を卯酉線(ぼうゆうせん)というが、緯線とは異なる概念を指す。

太陽は地上から見て赤道直上を中心に南北に往復しているがその範囲は緯度23度27分までであり、この緯線を回帰線(北回帰線南回帰線)と言う。また、緯度が66度33分よりも高い地域を極圏(北極圏南極圏)という。

1海里は緯度1分の地球表面上の距離を元に作られており、ほぼそれに等しい。

緯度の種類

地球は完全なではなく回転楕円体(扁球)で近似する(しかし実際にはそれからもわずかにずれている)。そのため、完全な球であれば同義である以下の定義にも差異が生じる。

地理緯度 (geographic latitude)

地球を回転楕円体で近似したときに、その地点における楕円体面の法線と赤道面とがなす角度を、地理緯度と呼ぶ。単に「緯度」といえば通常この意味で用いる。以下では、地理緯度を φ{\displaystyle \varphi \,\!}地球楕円体長半径、第三扁平率および第一離心率をそれぞれ a{\displaystyle a\,\!}n{\displaystyle n\,\!} および e{\displaystyle e\,\!} とする。

地心緯度 (geocentric latitude)

地心緯度ψの定義

その地点と地球の重心とを結ぶ直線、および赤道面とでなす角の角度を、地心緯度と呼ぶ。地心緯度 ψ{\displaystyle \psi \,\!} は、地理緯度 φ{\displaystyle \varphi \,\!} と以下のような関係にある:

ψ(φ)=tan-1((1-e2)tanφ)=tan-1[(1-n1+n)2tanφ]{\displaystyle {\begin{aligned}\psi (\varphi )&=\tan ^{-1}\left((1-e^{2})\tan \varphi \right)\\&=\tan ^{-1}\left[\left({\frac {1-n}{1+n}}\right)^{2}\tan \varphi \right]\end{aligned}}}

同地点における地理緯度と地心緯度との差は、当該地理緯度を用いて以下のように表される。

φ-ψ=tan-1(e2sinφcosφ1-e2sin2φ)=tan-1(2nsin2φ1+2ncos2φ+n2){\displaystyle {\begin{aligned}\varphi -\psi &=\tan ^{-1}\left({\frac {e^{2}\sin \varphi \cos \varphi }{1-e^{2}\sin ^{2}\varphi }}\right)\\&=\tan ^{-1}\left({\frac {2n\sin 2\varphi }{1+2n\cos 2\varphi +n^{2}}}\right)\end{aligned}}}

上式から分かるように、地理緯度とは最大で1133程度(緯度45付近)の差がある。

更成緯度 (reduced latitude)

更成緯度βの定義

図のように、中心が地球楕円体の中心と一致し、半径が地球楕円体の長半径に等しい球を考えたとき、地球楕円体上の位置を当該球に地球の自転軸と平行に射影した位置が示す緯度として定義される。更成緯度 β{\displaystyle \beta \,\!} は、地理緯度 φ{\displaystyle \varphi \,\!} と以下のような関係にある:

β(φ)=tan-1(1-e2tanφ)=tan-1(1-n1+ntanφ){\displaystyle {\begin{aligned}\beta (\varphi )&=\tan ^{-1}\left({\sqrt {1-e^{2}}}\tan \varphi \right)\\&=\tan ^{-1}\left({\frac {1-n}{1+n}}\tan \varphi \right)\end{aligned}}}

なお、更成緯度は“パラメトリック緯度”(parametric latitude) とも称される。これは、右図において点 P(p,z){\displaystyle P(p,z)} の座標値 p{\displaystyle p\,\!} および z{\displaystyle z\,\!} を、それぞれ β{\displaystyle \beta \,\!}媒介変数として

p=acosβ,z=bsinβ{\displaystyle p=a\cos \beta ,\quad z=b\sin \beta }

と表すことができることから、アーサー・ケイリーが提唱したことによる。

正積緯度 (authalic latitude)

球への等積写像を与える緯度として定義される。正積緯度 ξ{\displaystyle \xi \,\!} は、地理緯度 φ{\displaystyle \varphi \,\!} と以下のような関係にある:

ξ(φ)=sin-1(s(φ)s(π/2)){\displaystyle \xi (\varphi )=\sin ^{-1}\left({\frac {s(\varphi )}{s(\pi /2)}}\right)}

ただし、s(φ){\displaystyle s(\varphi )\,\!} は赤道から地理緯度 φ{\displaystyle \varphi \,\!} までの緯度帯面積を表し、地理緯度 θ{\displaystyle \theta \,\!} における地球楕円体の子午線曲率半径および卯酉線曲率半径をそれぞれ Mθ{\displaystyle M_{\theta }\,\!} および Nθ{\displaystyle N_{\theta }\,\!} とするとき、

s(φ)=2π0φMθNθcosθdθ=πa2(1e-e)(esinφ1-e2sin2φ+tanh-1(esinφ)){\displaystyle {\begin{aligned}s(\varphi )&=2\pi \int _{0}^{\varphi }M_{\theta }N_{\theta }\cos \theta {\rm {d}}\theta \\&=\pi a^{2}\left({\frac {1}{e}}-e\right)\left({\frac {e\sin \varphi }{1-e^{2}\sin ^{2}\varphi }}+\tanh ^{-1}(e\sin \varphi )\right)\end{aligned}}}

で与えられる。

求長緯度 (rectifying latitude)

赤道から地理緯度までの子午線弧長で換算される緯度で、求長緯度 μ{\displaystyle \mu \,\!} は、地理緯度 φ{\displaystyle \varphi \,\!} と以下のような関係にある:

μ(φ)=π2m(φ)m(π/2){\displaystyle \mu (\varphi )={\frac {\pi }{2}}{\frac {m(\varphi )}{m(\pi /2)}}}

ただし、m(φ){\displaystyle m(\varphi )\,\!} は赤道から地理緯度 φ{\displaystyle \varphi \,\!} までの子午線弧長を表し、

m(φ)=0φMθdθ{\displaystyle m(\varphi )=\int _{0}^{\varphi }M_{\theta }{\rm {d}}\theta }

で与えられる。

μ{\displaystyle \mu \,\!}φ{\displaystyle \varphi \,\!} についてよりあらわに書き下せば、次のように表すことができる。

μ(φ)=φ+j=0{k=1j(n2k+n)}2l=12jsin2lφlm=1l(-n2j+2(-1)mm/2-n)(-1)mj=0{k=1j(n2k+n)}2{\displaystyle \mu (\varphi )=\varphi \,+\,{\frac {\displaystyle \sum _{j=0}^{\infty }\left\{\prod _{k=1}^{j}\left({\frac {n}{2k}}+n\right)\right\}^{2}\sum _{l=1}^{2j}{\frac {\sin 2l\varphi }{l}}\prod _{m=1}^{l}\left({\frac {-n}{2j+2\cdot (-1)^{m}\lfloor m/2\rfloor }}-n\right)^{(-1)^{m}}}{\displaystyle \sum _{j=0}^{\infty }\left\{\prod _{k=1}^{j}\left({\frac {n}{2k}}+n\right)\right\}^{2}}}}

等長緯度 (isometric latitude)

メルカトル図法による世界地図。横の線が緯線を表し、地理緯度 φ{\displaystyle \varphi \,\!} に相当する緯線は等長緯度 q(φ){\displaystyle q(\varphi )} に換算して配置されている。

地球楕円体上のいかなる位置においても経線方向と緯線方向の微小距離が等しくなるように換算された緯度で、等長緯度 q{\displaystyle q\,\!} は、地理緯度 φ{\displaystyle \varphi \,\!} と以下のような関係にある:

q(φ)=0φMθdθNθcosθ=gd-1(φ)-etanh-1(esinφ){\displaystyle q(\varphi )=\int _{0}^{\varphi }{\frac {M_{\theta }{\rm {d}}\theta }{N_{\theta }\cos \theta }}=\operatorname {gd} ^{-1}(\varphi )-e\tanh ^{-1}(e\sin \varphi )}

ただし、gd(x){\displaystyle \operatorname {gd} (x)}グーデルマン関数であり、gd-1(x){\displaystyle \operatorname {gd} ^{-1}(x)} はその逆関数を表す。

等長緯度はメルカトル図法において重要な役割を果たす量であり、地球楕円体上の φ={\displaystyle \varphi =} 一定 の平行圏(緯線)は、投影面において q={\displaystyle q=} 一定 の直線として写像されることになる。

正角緯度 (conformal latitude)

球への等角写像を与える緯度として定義される。正角緯度 χ{\displaystyle \chi \,\!} は、地理緯度 φ{\displaystyle \varphi \,\!} と以下のような関係にある:

χ(φ)=gd(q(φ))=gd(gd-1(φ)-etanh-1(esinφ)){\displaystyle \chi (\varphi )=\operatorname {gd} \left(q(\varphi )\right)=\operatorname {gd} \left(\operatorname {gd} ^{-1}(\varphi )-e\tanh ^{-1}(e\sin \varphi )\right)}

天文緯度 (astronomical latitude)

詳細は「天文経緯度」を参照

その地点の重力に基づく「真上」(鉛直方向、天頂方向)と赤道面がなす角度を、天文緯度と呼ぶ。天の北極天の南極高度と同じであり、主に天文観測で求めたため「天文」の名がつく。実際には大気差によるずれが生じるため、大気差の小さい「真上」付近に来る星を子午環で観測し、赤緯を測定して求めた。

重力は等重力ポテンシャル面(ジオイド面)の法線方向であるから、ジオイド面が地球楕円体面と完全に一致すれば天文緯度と地理緯度は一致する。しかし実際は地下の質量分布が不均等であるため、ジオイド面が複雑に歪んでいる。その影響で、天文緯度と地理緯度の間には数秒程度の差がある(鉛直線偏差)。

これに加え、赤道面の変化、すなわち自転軸の変化が存在する(極運動)。これは428日周期を持っているので、天文緯度は常に周期的に変化している。ただし数年幅の短期的な変化は0.5秒以下である。それ以上の長期的な変化も存在し、地球全体の質量分布の変化が原因と考えられるが、現時点では長期的な予測は困難である。

それでも、GPSなど長い距離を正確に測る手段がない20世紀前半までは、これがもっとも正確な測定方法であった。

測地学的緯度 (geodetic latitude)

「測地学的緯度」を地理緯度と同じ意味で、もしくは地球楕円体面上の問題であることを強調するために用いることがあるが、ここでは地理緯度と分けて用語を設定し説明する。

大雑把に言えば「地図から読み取った緯度」と定義できる。その時点での測量技術に基づきもっとも正確に求められる「緯度」であるが、あくまでその時点の技術水準に依存する。20世紀中においては、首都の天文台での観測結果を元に測地系と地球楕円体を先に決めた上で、その地点までの地上測量を基に決定した緯度である。その地点の重力の歪みの影響は直接受けないものの、測地系決定のために行った測量のずれ(日本で言えば東京での重力の歪み)や採用した地球楕円体の誤差の影響を受ける。GPSVLBIもない20世紀初頭には、地球の正確な形状、地球重心の位置、重力の歪みなどを正確に測定する方法がなく、測地学的緯度をもって地理緯度とみなすことが多かった。

緯度1秒の長さ

地球の子午線周長は約40 008kmである。すなわち、平均的には

と求められるが、実際には地球は回転楕円体に近い形をしているため、緯度によって僅かながら緯度1秒の長さに違いがある。ちなみに、海里は元来、緯度1分の長さであるが、より正確には緯度45度における緯度1分の子午線弧長が海里のもともとの定義になっていた(30.869 938m/秒 = 1852.196 m/分(ただし、この数値は、現今のGRS 80によるものであって、海里の定義を定めたときには異なる値であった。))。

緯度1秒の長さ l{\displaystyle l\,\!} は着目している地点の地理緯度 φ{\displaystyle \varphi \,\!} に依存し、地球楕円体赤道半径(長半径)を a{\displaystyle a\,\!}離心率e{\displaystyle e\,\!} とすると、近似的に

lπMφ648000=π648000a(1-e2)(1-e2sin2φ)3/2{\displaystyle l\simeq {\frac {\pi M_{\varphi }}{648000}}={\frac {\pi }{648000}}\cdot {\frac {a(1-e^{2})}{(1-e^{2}\sin ^{2}\varphi )^{3/2}}}}

と表される。 地球楕円体としてGRS 80を採用した場合、a) 30.820 188 m
36度 30.822 m
37度 30.827 m
38度 30.832 m
39度 30.838 m
40度 30.843 m
41度 30.848 m
42度 30.854 m
43度 30.859 m
44度 30.865 m
45度 30.870 m
46度 30.875 m
47度 30.881 m
48度 30.886 m
49度 30.892 m
50度 30.897 m
60度 30.948 m
75度 31.005 m
90度(極点) 31.026 m

各緯度の主要な都市

注:緯度の値は概略値
出典:wikipedia
2020/08/07 04:46

HAPPY Wikipedia

あなたの考える「緯度」の意味を投稿しよう
「緯度」のコンテンツはまだ投稿されていません。
全部読む・投稿 

緯度スレッド一覧

・・・・・・・・・・・・・・・・・・
「緯度」のスレッドを作成する
緯度の」
友達を探す
掲示板を探す
このページ
友達に教える
URLをコピー

注目のキーワード

錦織圭/北島康介/2014_FIFAワールドカップ・アジア予選/サッカー日本女子代表/消費税/東京スカイツリー/ダルビッシュ有/イチロー/香川真司/野田内閣/復興庁/石川遼/HKT48/AKB48/ワールド・ベースボール・クラシック日本代表/黒田博樹/尖閣諸島/バレンタインデー/ONE_PIECE

キーワードで探す

 
友達を探す
掲示板を探す
ハッピーWiki
ハッピーメール
ハッピーランド
HAPPY NEWS
2010Happy Mail