LED照明(エルイーディーしょうめい、英: LED lamp, LED light bulb)は、発光ダイオード (LED) を使用した照明器具のことである。2017年現在、照明器具の主力光源となっている。
LEDを使用しているため、低消費電力で長寿命といった特徴を持つ。定格範囲内で使用する限り発光素子自身は比較的長寿命であり、熱による劣化が寿命の決定要因となる。
LED照明に求められる白色の発色には青色の光源が必要なため、1990年代に青色LEDが発明されるまでは可視光LEDを使ったLED照明を作ることは現実的ではなかった。ブルーライトを伴った高輝度のLED照明が普及し環境や健康に有害であるため、2016年にはアメリカ医師会が、運転や睡眠、生態系に与える影響を低減するためのガイダンスを作成している。
LED照明は、蛍光灯や白熱電球といった従来型の照明器具と比較すると以下の特徴を備える。
LED素子の帯域はレーザーのような線スペクトルほどではないが、既存の光源に比べるとずっと狭く、単一のLEDで白色光を出すことはできない。
ただし、蛍光体により短波長の光を長波長の光に変換することができるので、LED自体は青色のみにして他の色は蛍光によって出すこともできる。いずれも青色LEDが必須であり、青色LEDの発明によって初めてLED照明は現実的となった。
青色LEDと黄色発光体を使ったものが最も普及している。青色LEDと赤色・緑色発光体を使ったものもあり、演色性には優れるが、高価でエネルギー効率に劣る。蛍光の帯域は広く、帯域が広いほうが演色性に優れた良質な照明なので、照明には主に蛍光体が使われる。
エネルギー効率が良いため、様々な場面で従来の照明から、高輝度のLED照明に置き換えられているが、その明るさや、白色光に見られるブルーライトは環境や健康に有害であるため、2016年にはアメリカ医師会がガイダンスを作成している。青色が豊富な強烈な光は、運転手の視力に影響を与え、安全性を低下させる。夜間に(睡眠を司るホルモン)メラトニンの分泌を抑制し、大規模調査は、住居における夜間の明るい照明は、睡眠時間の減少、睡眠の質の低下、眠気、昼間の機能の低下、また肥満に関連することが判明している。過剰な照明は闇を必要とする鳥、昆虫、亀、魚など他の生物の生態にも影響する。このため、まぶしさの低減とブルーライトの制御が必要である。
各種照明器具同士の比較を表で示す。
|パナソニック電工によれば、白熱灯に比べて約87%、蛍光灯に比べて約30%消費電力が削減できるとされ、初期費用についても消費電力の削減によって2 - 3年で回収できるとしている。
高輝度LEDの外形形状は、シングルチップの砲弾型と表面実装型(SMD型)、マルチチップの表面実装型と多様な形態に大別できる。LEDは逆電圧に弱いため、逆接ダイオードを備えたり、静電気に対して保護素子を内蔵するものもある。
砲弾型では直径3mmや5mmのものが多い。配線の極性は砲弾型ではアノード側(プラス側)がリード線が長く、表面実装型ではカソード側(マイナス側)に印が入っていることが多いが例外もあるので注意が必要である。
表面実装型は多様な形状が存在する。2009年現在登場している「パワーLED」と呼ばれる新たな照明用LEDのパッケージは、放熱性や発光特性に考慮して各社で異なるため、それらの形状はまちまちである。パッケージの背面に放熱板(ヒートシンク)が密着して取り付けられるので、放熱には有利となる。
基本的に表面実装型では、配線が描かれた小型基板の上にリフレクタが取り付けられ、その中央に素子が置かれてダイ・ボンディングされ、素子と基板の間がワイヤ・ボンディングで接続される。蛍光体と樹脂がリフレクタで囲まれた上に注がれ素子を覆っている。小型基板は樹脂、金属、セラミックが使用される。
表面実装型(SMD型)は、一般にフェース・アップ実装とフリップチップ実装のものがある。これらの他に、チップの新たな構造として、張り合わせタイプがある。
張り合わせタイプではフリップチップの素子に似ているが形状が少し異なり、フリップした時に外部を向くサファイヤ層は除かれて反対に基部になる層として導電性基板が貼り付けられる。
フリップチップ実装によってセラミック製のパッケージに直接実装する方法も採られている。セラミック製のパッケージに直接実装すれば、サブマウントを省くことで工程の簡略化や信頼性の向上になる。このようなものはCOB(Chip on board)と呼ばれ、複数の素子を1つの大きなパッケージに直接実装したモジュールとすることで放熱性が高められる。
マルチチップLEDは1つのパッケージ内に複数個のLED発光素子を搭載した複合構造のLEDである。マルチチップの実装では、表面実装型とそのほかの多様な形態のパッケージがある。シングルチップでは素子(チップ)は高光出力で大きさも1mm角以上と大きめのラージサイズチップが使用されることが多いが、マルチチップでは0.6mm角程度のミドルサイズチップや0.35mm角程度のノーマルサイズチップが使用されることが多い。
マルチチップでは素子自身の発光色の組み合わせによって2通りの構成がある。
前者は演色性に問題が少なく、一般照明用途に向く。
後者は各色のスペクトルが狭く演色性に問題がある。一般照明用途に向かないがカラー液晶用のバックライトには適している。
マルチチップでは発熱源が分散できるが発熱が増えるのでシングルチップ以上に放熱が求められる。また、発熱部分が集中して温度が部分的に上昇し過ぎないように留意する必要がある。
蛍光体を使用する白色LEDでは、蛍光体はリフレクタによる作られるくぼみなどに充填される。沈降などで発光素子の近くにだけ蛍光体の分子が濃密に分布しないよう均質に分散している必要があり、充填量もどの製品でも等しく正確な量でなければならない。これらが守られないと、製品は色ムラによる不良となる。
シングルチップとマルチチップでは形態だけでなく特性や用途も異なってくる。
LEDは、極性のある直流によって発光し、適正電圧と耐圧がともに低いため、使用には専用の電源が必要となる。LEDはダイオードであるため、順方向電流と順電圧には相関があり、数ボルト程度の低い耐圧に応じた順電圧が少し上昇するだけで過大な順方向電流が流れて容易に損傷を受ける。これを回避するために、電流制限抵抗や定電流素子(定電流ダイオードや定電流ICなど)をLEDに直列に挿入して、電圧変動による影響を少なくする必要がある。
一般にLED照明では複数のLED素子を使用するため、それらの接続方式には以下の3種がある。
上記のLED素子の単体の故障時に、たとえ発光が維持できても、規定した電流・電圧からは外れるため、照度や寿命を考慮すれば、故障したLED素子を交換する方が良い。
また、LEDの順電圧の総和が、電源電圧に近くなる数だけ直列接続すれば、電源回路を省いて100Vの交流商用電源に、そのまま接続することは可能であるが、素子数の制約だけでなく、LED素子は極めて耐圧が低いため、ちょっとしたサージで簡単に損傷する可能性があり、商用電源周波数の影響をまともに受け、人によってはチカチカと点滅を繰り返した照明となるため、商品としての設計には向いていない。
LEDの駆動には電圧変動を少なくするために、定電圧回路による駆動が考慮される。また、順電圧には負の温度特性があり、温度が上がると順電圧が下がるので、温度特性による光量変化が避けたい場合には定電流回路で駆動することも考えられる。
他の照明器具では考慮する必要がないが、LEDは微弱な電流でもそれに相当する弱い光を放つため、消灯時には電源回路からの漏れ電流がLEDに加わらないようにする必要がある。数μA程の微弱な電流でも暗闇では点灯が判別できるので、電源回路の設計には注意が求められる。
それ自身が発熱する電源回路は、熱に弱いLED素子の放熱を阻害しないように離して設置する必要があるが、供給電圧が低い場合にあまり両者を離すと、給電用電線の抵抗で電圧降下を起こしエネルギー損失と共に予定した光度が得られない可能性があるので、注意が求められる。
以下はTa:25℃ If:20mA の時。
LED照明の使用中、電源回路からは電源コイルが発する磁力の影響により、ノイズが発生することが多い(回路によっては定電流ダイオード(CRD)を使用し、ノイズが発生しない構成を取るものもある)。そのため電源回路にはノイズが漏洩しないよう、フィルタ回路等で適切な電磁両立性(EMC)対策を施すことが求められる。
2012年7月より、日本国内においてはLED関連器具(LEDランプおよびLED電灯器具)が、電気用品安全法(PSE)の規制対象となり、製品安全試験に加え不要輻射(EMI測定)が必須要求となった。規制前は、主に格安製品を中心に、適切なEMC対策が施されていない物も少なくなかった。
このような製品は、LED照明が点灯している間は常にノイズが発生するため、中にはテレビ・ラジオ等の電波の受信に悪影響が出る場合もあり、街路灯の光源を全てLED電球に交換したところ、テレビの受信障害が発生したため、不要輻射対策品への再交換を行った事例もある。
LEDは半導体であるため、定格範囲内で使用する限り発光素子自身は比較的長寿命である。ただし、発光素子を取り巻く樹脂材料は強い光や半導体の発熱で劣化を受けるため他の部分が正常でも比較的早期に透明度が失われて使用には適さなくなる。この劣化をいかに抑えるかがLED照明の主要な課題の1つである。また、電気製品であるため発光部以外でも例えば電源回路の電解コンデンサなども主に熱による劣化を受けて照明器具の寿命を決める要素となりうる。
白色LEDの寿命はおおむね2万時間から6万時間程度とされている。照明器具全体での温度や湿度に対する耐久性が求められるが、その全体の寿命は発光部や電源回路だけでなく、スイッチや電線なども経年変化を受けるため、他の電気機器と同様に10年程度を目処に交換することが推奨される。
LED発光素子は光を除けばおおむね半導体の順方向電圧による電力消費とそれ以外の内部抵抗による電力消費によって発熱する。半導体部分の温度はジャンクション温度と呼ばれ、最も高温となる部位である。ジャンクション温度は以下の温度モデルで表現される。
:ジャンクション温度
:ジャンクションとボードとの温度差
:ボードと環境との温度差
:ジャンクションとボード間の熱抵抗[K・W]
:ボードと環境間の熱抵抗[K・W]
:環境の温度
:消費電力
LED発光素子のジャンクション温度の上昇が樹脂、蛍光体、はんだ、電極金属、半導体結晶などの劣化要素となるため、ジャンクション温度の抑制が寿命や不良低減に有効となる。ジャンクション温度の抑制には、上式が示す通り、消費電力、熱抵抗、環境温度のそれぞれを下げることが有効である。
照明器具では低温環境での使用も考慮されなければならない。低温環境では高温による劣化といった負の効果は避けられるが、水分の浸透による凍結膨張や結露、ショート、水分吸収による部材の化学変化などに配慮する必要がある。
劣化は高温度によって加速されるため、熱を効率よく逃がして過度な高温状態とならないようにすることが求められる。このため照明用LEDは十分広い面積の放熱板に取り付けられることが推奨され、これが不可能な場合には強制空冷にするか駆動電流を減らして照度を小さくする、さもなくば寿命の短縮を甘受することになる。照明器具として利用する場合に、従来の白熱灯や蛍光灯、HIDランプと同等に施工業者が扱って放熱対策を万全に行わない時には、寿命が極端に短くなる恐れがある。
従来の赤色LEDでは発光によってもそれほど劣化しなかったエポキシ樹脂も、青や紫外線での発光では光子のエネルギーが大きいために、局部的に黄変することが知られている。照明用途では光劣化を起こしにくいシリコーン樹脂の採用が求められる。
外部の機器や電源ラインから侵入してくる「静電気」「過電圧」「電磁波」から、保護し故障や誤動作を引き起こさない性能が求められる。また、LED 照明自身が電源線や空間に外部に放出する電磁波(不要輻射)によって、周辺で使用される電気製品が誤動作したり、ラジオやテレビの受信障害を生じない性能も求められる。
照明として使用されるLEDには人間の目にとって都合の良い白色光が使われる。白色LEDの発光原理はいくつかあるが、発光効率や波長に対する強度が異なるので、LED照明の使用目的に合わせて適する種類を選択する。
発光特性で考慮すべきなのは人間が照明として使用する場合、LEDの発光効率を単に物理的な光のエネルギーとして計測するだけでは不十分であり、人間の比視感度まで考慮する必要がある点である。
ヒトの眼は、明るい環境では波長555nmの緑色が最も敏感に明るさを感知し、それより長いか短い波長では感度が徐々に低くなり、赤外線や紫外線では全く見えなくなる。このため照明の発色を設計する際には、ヒトが肉眼で見た場合に自然に感じるようヒトの眼の感度も考慮する必要がある。このことは比較的発光効率の良い長波長の赤色領域では問題とはならないが、発光効率があまり良くない短波長の青色領域でそれだけ多くの電力を消費することになる。
照明器具の性能は電力消費や寿命などの他に、発色する光そのものの性能も求められる。照明器具の色の性能は「色度図」、「相対色温度」、「演色性」によって表現される。
これらの性能のうち、色度図と相対色温度は、照明として使用される用途に応じた特性が求められる。演色性は0 - 100の間で大きな数値の方が良い。
色度図上での外周上の各点は単色光(Monochrome)に近く「飽和している」(Saturation)もしくは「色純度が良い」(Color purity)と呼ばれ、「ドミナントカラー」(Dominant color)とも呼ばれる。外縁部の線上に並ぶ色がそれぞれの主波長であり色純度(色飽和度)が100%になる。色純度(色飽和度)はa/a+bで表現され、LEDの発光はスペクトルに幅が生まれるため、その分だけ内側にずれる。LEDに限らず広いスペクトル幅を持つ光は色純度が低下して中心に近くなる。
黒体放射に伴う発光現象での発色を表すのに色温度(Color Temperature)が用いられるが、白色LEDは黒体放射による発光ではないため、その近似として相対色温度(Correlated Color Temperature, CCT)を用いる。
照明の演色性は、白昼の太陽光を最大の100とする指数で表す。色空間座標上での白、黄緑、緑、赤紫など8色の標準光源に対する標準対象物からの反射スペクトルと、検査対象の照明光源からの光による標準対象物からの反射スペクトルとを比較することで、計算式による指数の平均値から一般演色指数(Color Rendering Index, CRI)を導出する。また、平均演色評価数(Ra)という指数もある。
このCRIは白昼の太陽光が最大の100であるため、これより小さくなるにつれてその照明光源からの光の下では色の再現性が劣っていることを表す。
2009年現在は青色発光LEDにYAG系の黄色蛍光体を使用した照明用LED(擬似白色発光ダイオード)が最も一般的であるがこれはRa値が60 - 85である。一部には青色発光LEDに赤色と緑色の蛍光体を使用し、Ra値が90以上の高演色性LEDと呼ばれるものが作られ使用されているが、青色発光LEDと黄色の蛍光体との組み合わせに比べれば発光効率は2 - 3割低下してしまう。蛍光体を使わずにRGB各色それぞれのLEDを使って混色により白色を得る方法では、緑色発光の発光効率がかなり低いだけでなく、3色とも発光色の幅が狭いために演色性もいくつかある方式の中では最低であり、各色の配光パターンも異なり色にムラができるなどの理由で照明にはあまり用いられない。LEDは発光スペクトルが比較的狭いため、演色性を高めるには複数の蛍光体を使いできるだけ発光スペクトルを広げる方が良い。青色発光LEDに赤色と緑色の蛍光体の組み合わせ以上の演色性を求めるには、開発途上の紫外線発光LEDに青・赤・緑の3色の蛍光体を使用するのが良いと考えられる。しかし紫外線発光LEDは発光効率がまだ低く、照明に使用できるまで開発は進んでいない。
以下は2009年春の時点でのランプ費用、電気代、CO2排出量をそれぞれ4万時間を前提に算出した例である。なお光源によってはこの出典掲載時以降技術革新や量産化により価格や性能が大幅に向上している場合があるので、比較の際は最新の売価・配光や寿命などの性能・消費電力での再計算を要する。
1990年代に青色発光ダイオードが開発されて以降は、LEDによる白色光照明の実用可能性が高まり、局所照明を中心に徐々に市販製品が登場している。
野村総合研究所の予測では白色LED照明は世界全体で2012年には2009年の3倍近くの約4782億円相当になるとされる。富士経済では日本国内のLED照明市場は、2008年の全照明市場4494億円の内の約3%分133億円程度から、2012年には全照明市場4880億円の内の約12%分578億円程度になると予測している。
白熱電球は世界的にも環境対策や省エネルギー政策の観点から使用中止が求められる傾向があり、日本国内では環境省と経済産業省が2012年までに白熱電球の製造と販売の中止を業界に求めており、大手メーカーも協力する予定であるためほぼ廃絶される方向で進んでいる。韓国では「15/30プロジェクト」という2015年までに全照明の30%をLED照明に切り替える計画を進めている。中国では「10都市街灯普及プロジェクト」によって国内21都市でLED街灯を試験的に設置する。台湾政府は2008年間からの4年間で総額20億台湾元をLED関連の研究開発支援に投資する。台湾と同様に、中国、米国もLED照明の開発に政府が多額の資金援助を行っている。日本でも、国内立地の推進事業等を通して、LED(他にはリチウムイオン電池・太陽光発電等)の事業・工場の立地が進んだ。
照明器具産業は製品技術や市場変化の点で長い間大きな変化がなく、白熱電球や蛍光灯管という光源を作る幾つかのメーカーとそれを取り付ける器具メーカーがあり、両方行う総合照明メーカーも含めて棲み分けを行い成熟した市場で安定的な関係を構築してきた。特に光源メーカーとして新規参入する機会は乏しかったが、LED照明の登場で産業構造に変化の兆しがある。半導体を使用したLEDの光源は、半導体産業からの光源メーカーの参入機会を作りだす。新規参入と古参のいずれのメーカーでも小型で調光が比較的容易なLED照明ならではの製品を市場に提案しており、電球の置き換え市場だけを狙っている訳ではない。
また、今後は白熱電球だけでなく直管型蛍光灯の置き換えも視野に入っている。新規参入企業の多くが白熱電球型ではなく直管型蛍光灯の代替用途での製品開発と販売を進めている。直管型LED照明は器具の全てがLED照明専用であるものから、既設の直管型蛍光灯器具から安定器やインバータ部を取り外して配線をつなぐもの、既設の直管型蛍光灯器具から安定器やインバータ部を取り外さずにそのまま取り付けるもの、の3通りがある。ただし、既設器具から安定器等を撤去する行為は器具メーカーの保証を受けられなくなるほか、再度蛍光管に切り替える際に安定器を再設置する必要があるなどリスクが大きい。また、安定器を残置できるタイプのものは直管型LED照明に搭載する部品が増えるため、後述の問題を増大させる。
なお、蛍光管が全方位に光を放射するのに対し、直管型LED照